CONCEPTION D’UN MODULE POSITIONNEMENT DE L’APPRENANT POUR LES SYSTEMES TUTEURS INTELLIGENTS : MODELE ET EXPERIENCE

Ouidad Labouidya,
Doctorante en Sciences de l’information - communication
labouidya@ucd.ac.ma, +212 (0) 67 52 12 82

Najib Elkamoun,
Professeur en Sciences de l’information – communication
elkamoun@ucd.ac.ma, +212 (0) 79 33 27 45

Hassane Benabdillah,
Professeur en Sciences de l’information – communication
benabdillah@ucd.ac.ma, +212 (0) 61 93 84 24

Aziz Dahbi,
Doctorant en Sciences de l’information - communication
dahbi@ucd.ac.ma, +212 (0) 74 03 22 22

Abdelghafour Berraissoul,
Professeur en Sciences de l’information – communication
berraissoul@ucd.ac.ma, +212 (0) 61 58 47 67

Adresse professionnelle
Laboratoire STIC, Université Chouaib Doukkali, Faculté des Sciences ★ BP. 20 ★ El Jadida – Maroc

Résumé: Dans cet article nous proposons une méthode de positionnement de l'apprenant dédiée au système tuteur intelligent dans le contexte des Environnements Informatiques pour l’Apprentissage Humain. L’approche exploite la théorie des ensembles flous afin de traiter l’imprécision et incorporer dans le système une description adéquate de la connaissance experte. Dans cette perspective, l’obtention d’informations profitables sur les pré requis de l’apprenant permet de mieux orienter son auto apprentissage.

Mots clés: EIAH, Système Tuteur Intelligent, Positionnement de l’Apprenant, Logique Floue.

Summary: In this paper, we propose a method that implements learner positioning in the context of Intelligent Tutoring Data-processing Environments for the Human Training. The approach focuses on the fuzzy logic theory in order to deal with vagueness and incorporates an adequate description of expert knowledge into the system. In this perspective, obtaining beneficial information on the learner’s prerequisites can help better supervise his/her self-learning.

Key words: Data-processing Environments for the Human Training, Intelligent Tutoring System, Learner Positioning, Fuzzy Logic.
Conception d’un Module Positionnement de l’apprenant pour les systèmes tuteurs intelligents : modèle et expérience

L’enseignement accorde beaucoup d’importance au niveau de connaissances des apprenants quand on commence un nouveau cours (Özbek et al., 2003). Particulièrement en apprentissage autonome, il est important de déterminer le meilleur point d’entrée dans une formation. En effet, tous les apprenants ne possèdent pas les mêmes prés requis concernant un domaine d’apprentissage donné (Binglan, 2001). Cette différence des niveaux de connaissance ne peut être résolue en appliquant directement une adaptation dynamique. Dans ce cas, une adaptation statique est nécessaire : introduire une forme de positionnement tout au début de la formation pour estimer le niveau de connaissance de l'apprenant.

De nombreux travaux en intelligence artificielle sont consacrés à la question de l’évaluation pour la construction du module de l’apprenant. Cependant, tout processus d’évaluation implique des éléments d’incertitude ou d’imperfection de l’information au sens large. Nous en discuterons brièvement dans la section 2.1. Selon la forme de cette imperfection, on retrouve une multitude de théories qui varient tant par leurs formalismes que par leurs modes de traitement ; associés soit à la théorie des probabilités soit à la logique floue (Jameson, 1996).

Dans cet article, nous allons nous concentrer sur la fonction du Module Positionnement de l’apprenant au sein de notre Système d’Aide à l’Apprentissage Individualisé en Autoformation à Distance (SAAID). En fonction des réponses de l’apprenant au test d’évaluation sur les différents constituants du domaine d’apprentissage, ce module génère une estimation de son niveau de connaissance.

1 - APERÇU GENERAL DU SAAID

La modélisation de notre Système d’Aide à l’Apprentissage Individualisé en Autoformation à Distance (SAAID) utilise une approche basée sur les Systèmes Tuteur Intelligent (STI) et les Systèmes Multi Agents (SMA) (Labouidya, 2003). L’objectif principal du SAAID est de produire une assistance personnalisée et intelligente pour l’appropriation d’un parcours d’apprentissage individualisé.

La qualité du contenu du parcours d’apprentissage individualisé, adapté à un apprenant donné, dépend essentiellement de la méthodologie de construction du Modèle de l’Apprenant au sein du Système Tuteur Intelligent. Dans le SAAID, le Modèle de l’Apprenant se base sur une fonction

Figure 1. Architecture du SAAID
d’adaptation statique (Positionnement) tout au début de la formation, fournissant ainsi la position initiale de l’apprenant par rapport au domaine d’apprentissage, pour déclencher ensuite l’adaptation dynamique au fur et à mesure que l’apprenant progresse dans son cursus. Pour ce faire, un test d'évaluation dans le SAAID, incluant des questions au sujet des principales matières du domaine des connaissances, permet d’estimer le niveau de l’apprenant au début de son auto apprentissage.

Notre Système d’Aide à l’Apprentissage Individualisé en Autoformation à Distance est constitué de quatre modèles (Figure 1), à savoir : le Modèle de l’Interface des communications qui contrôle les interactions avec l’apprenant, le Modèle de l’Apprenant qui permet au système multi agents de raisonnner sur les capacités de celui-ci, le Modèle du Domaine qui contient l'information structurée des connaissances à enseigner afin que les autres parties du (STI) puissent y accéder et enfin le Modèle Pédagogique qui permet de déterminer à quel moment intervenir pour aider ou guider l’apprenant. Le Modèle de l'Apprenant est utilisé comme entrée à ce composant, par conséquent les décisions pédagogiques reflètent les différents besoins de chaque apprenant. Le Système Multi Agents (SMA) gère les relations entre les différents modèles du Système Tuteur et l’apprenant (Labouidya et al., 2005a).

L'évaluation de l’apprenant est le processus qui fait évoluer le modèle de l’apprenant, l’analyse des interactions entre l’apprenant et le système tuteur intelligent s’impose. Cette analyse est exécutée en vérifiant des réponses aux questions posées par le système. Le positionnement de l'apprenant s'inscrit dans cette perspective avec des buts spécifiques. Il s'agit de mesurer les acquis de l'apprenant afin d'identifier son niveau de connaissance par rapport au domaine enseigné. Pour la réalisation de cette tâche, le Module Positionnement (Figure 1) fait appel à un test stocké dans une base de données. En fonction des résultats du test, le Module Positionnement identifie le niveau de connaissance de l’apprenant et initialise ainsi le Modèle de l’Apprenant.

Cependant, l'évaluation estimative du niveau de connaissance de l'apprenant dans un système d'apprentissage prend différentes formes en fonction des décisions à prendre. Selon (Bloom, 1971), l'évaluation se fait selon deux types de fonction : la fonction sommative et la fonction formative. La fonction d'évaluation est sommative lorsqu'elle est un moyen de contrôle de la progression de l'apprenant au point de sortie du système. Elle est formative lorsque le but de l'évaluation est de fournir des informations permettant une adaptation de l'apprentissage par rapport aux différences individuelles des apprenants. Le positionnement de l'apprenant s'inscrit dans cette dernière perspective.

Or, la base d'un processus de jugement est la mise en référence de l'évaluation. Ainsi, pour rendre l'évaluation significative, il est important de comparer les capacités de l'apprenant à une mesure commune. À cet effet, trois manières principales de la mise en référence sont appliquées : contre pairs (référence normative), à travers laquelle le jugement est essentiellement une comparaison entre un apprenant et d'autres; contre des critères objectifs (référence critériée), à travers laquelle le jugement est une comparaison entre les capacités de l'apprenant et le contenu du domaine prédéfini ; et contre l'apprenant lui-même (référence ipsoitive), à travers laquelle le jugement est une comparaison entre la compétence de l'apprenant dans un domaine par rapport à sa compétence antérieure, ou celle en d'autres domaines (Mhairy, 2002).

L’approche proposée dans cet article s’appuie sur des résultats précédemment rapportés dans
(Laboudiya et al., 2005b ; 2007) et incorpore dans notre système SAAID la capacité de considérer des critères multiples. Habituellement le processus d'évaluation du niveau de connaissance de l'apprenant est influencé par plusieurs conditions sur lesquelles l'enseignant-expert se base pour adapter l'évaluation telle que la nature de la matière à enseigner, le niveau de difficulté des questions, ... etc. Ainsi, la déinition de l'importance relative des critères utilisés, fournit au Module Positionnement de notre système la connaissance venant de l'expertise de l'enseignant.

2 - MODULE POSITIONNEMENT DE L'APPRENANT DANS LE SAAID

Dans un système d'autoformation à distance où il n'y a aucune interaction entre le tuteur et l'apprenant, les données rassemblées tendent à être plus imparfaites que celles obtenues par l'interaction face à face traditionnelle. En outre, il est plus difficile de compter sur ce type de systèmes en tout ce qui concerne 'collecte de l'information de base et 'expérience appropriée', comme les tuteurs humains. Vu les attributs du problème ci-dessus, il est évident que l'élaboration d'une méthode crédible pour le positionnement de l'apprenant doit être basée sur une manipulation réussie de l'information.

2.1 - Etat de l'art

La présence d'information imparfaite est un facteur important qui mêne souvent aux erreurs dans l'évaluation de l'apprenant. Cette imperfection semble due aux erreurs et aux approximations impliquées lors du recueil de l'information, partiellement en raison de la nature abstraite de la connaissance humaine et de la perte d'information résultant de sa quantification.

Comme mentionné dans l'introduction, différents types d'information relative aux variables intervenant dans un modèle d'évaluation, se prêtent à différents modes de représentation de l'imperfection. Face à la multitude de théories de traitement des imperfections de l'information, c'est la question du choix d'une théorie en particulier et d'un examen minutieux de l'application en question, qui s'imposent dans tout essai de modélisation. Dans son étude, (French S., 1995) en distingue deux principales catégories :

- Les incertitudes concernant une ambiguïté sur la validité d'une connaissance : dues entre autres à la crédibilité relative de l'intermédiaire d'observation, ou à la difficulté dans l'obtention ou la vérification de la connaissance. Des incertitudes sont également présentes dans le cas de prévisions.

- Les imprécisions correspondant à une difficulté dans l'énoncé de la connaissance : soit parce que cette dernière est mal connue ou approximative, soit parce que les termes du langage naturel utilisés pour qualiuer une caractéristique du système sont vagues.

Une fois la nature prédominante de l'imperfection de l'information est identifiée, on fera appel à une théorie particulière de modélisation de cette imperfection. Par exemple, en présence d'incertitudes (données prévisionnelles ou de nature aléatoire), des approches dites «Bayésiennes» utilisant des probabilités conditionnelles s'appliquent. Ces approches ont notamment été appliquées pour gérer l'incertitude concernant le modèle de l'apprenant dans plusieurs recherches (Conati et al, 2002 ; Zapata-Rivera J-D. et Greer J., 2004 ; Hibou M., 2006).

Par contre, si les imperfections de l'information sont reliées à des valeurs approximatives, des termes vagues ou à des situations intermédiaires entre le tout et le rien, on est alors en face d'information de nature imprécise. Ce sont des données floues et on se trouve dans l'incapacité d'identifier concrètement une distribution de probabilités appropriée. La théorie des sous-ensembles flous (Zadeh, 1965) se présente comme un outil privilégié pour la modélisation des situations présentant des imprécisions.

Pour illustrer encore ce propos, on peut citer l'exemple classique de Jim Bezdek (logique floue-Wikipédia.html) qui permet de mieux différencier probabilité et imprécision : « On se trouve dans un désert, après des jours d'errance... Presque mort de soif, on trouve alors 2 bouteilles remplies d'un liquide. Sur la bouteille A, une étiquette annonce "potable avec un degré 0.9", et sur la bouteille B, l'étiquette dit "potable avec une probabilité 0.9". Laquelle de ces 2 bouteilles peut on boire?". Si l'on traduit les indications des étiquettes, on en retire qu'en buvant la bouteille A,
on pourra s'en tirer avec comme seuls risques, quelques problèmes intestinaux non mortels... Par contre, en buvant la bouteille B, il y a une probabilité non négligeable (10% de chance) que le liquide puisse être très nocif (acide,...) et absolument pas buvable ».

Les parties floues (ou sous-ensembles flous) ont été introduites afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes qui utilisent cette modélisation. Les sous-ensembles flous sont utilisés soit pour modéliser l'incertitude et l'imprécision, soit pour représenter des informations précises sous forme lexicale assimilable par un système expert.

Comme méthode de traitement de l'incertitude et d'incorporation de l'expertise et pour la flexibilité de l’enseignant dans l'évaluation de l'apprenant, nous employons une approche basée sur la théorie des ensembles flous comme mentionné auparavant. Le but du positionnement est d'obtenir des informations sur la connaissance de l'apprenant dans chaque matière comme procède un enseignant-expert. Afin de réaliser ceci, nous devons modéliser la connaissance et l'expérience de l'enseignant et modéliser également le processus d'inférence employé par celui-ci.

2.2 - Modélisation de l'expertise de l'enseignant
Cette partie représente la description linguistique de la connaissance experte intervenant dans le processus. Parmi les aspects de la connaissance de l'enseignant-expert qui devraient être modélisés pour adapter l'évaluation du niveau de connaissance de l'apprenant, nous avons noté : la nature de la matière à enseigner et le niveau de difficulté des questions. Ainsi, la définition de l'importance relative des critères utilisés, fournit au Module Positionnement du système la connaissance venant de l'expertise de l'enseignant.

Afin de mesurer la connaissance de l'apprenant par rapport au domaine de connaissances considéré et pour définir son parcours en fonction de son niveau d'expertise initial, un test d'évaluation s'impose. Pour construire ce dernier, nous nous sommes inspiré de l’approche "Component Display Theory" concernant les niveaux de performance (Merrill, 1983) et de "la Taxonomie de Bloom" (Bloom et al., 1956). La nature des capacités visées va être explicitée en fonction des objectifs.

Ainsi les questions du test sont groupées en quatre classes : (1) Concept : questions qui examinent la capacité de l’apprenant de se rappeler des informations de nature théorique, (2) Méthodologie : questions qui examinent la capacité de l’apprenant d’identifier les méthodes et les techniques de travail adaptées à une situation donnée, (3) Outil : questions qui examinent la capacité de l’apprenant d’utiliser les outils associés aux technologies de l'information et de la communication nécessaires au domaine d’apprentissage en question et enfin (4) Transfert : questions qui examinent la capacité de l’apprenant d’appliquer les informations fournies à des cas spécifiques. Le test se compose de questions à choix multiples qui sont présentées à l’apprenant l’une après l’autre suivant une progression du niveau de difficulté {Facile, Moyen, Difficile}. Pour que l'évaluation soit aussi proche que possible de la manière qu’un enseignant-expert évalue un apprenant, nous avons choisi un modèle qualitatif, qui classifie la connaissance sur trois niveaux de performance {Insuffisant, Moyen, Suffisant}.

L'analyse des interactions entre l'apprenant et notre système est exécutée en vérifiant les réponses aux questions posées. Nous essayons de modéliser ce processus d’évaluation par l'utilisation des ensembles flous visant à combiner les mesures quantitatives (pourcentage des réponses correctes par niveau de difficulté {Facile, Moyen, Difficile} pour chacune des classes {Concept, Méthodologie, Outil, Transfert}), afin d'obtenir des caractérisations qualitatives de la connaissance de l'apprenant.

2.3 - Algorithme d’inférence
La logique floue est employée pour manipuler l'incertitude et pour exprimer la connaissance qualitative de l’expert d'une manière clairement interprétable. Le modèle flou représente la connaissance de l’enseignant-expert en forme linguistique et inclut les caractéristiques de l’apprenant sous forme d’un ensemble de systèmes flous, réalisant de cette façon le processus de positionnement " comme " un expert. C’est à dire qu’une décision n’est prise qu’en combinant des faits flous, contribuant chacun à un
certain degré à une relation floue et à la décision finale.
En effet, l’algorithme flou se déroule en 3 étapes :
- **Etape1** : transformation de variables quantitatives en variables logiques floues,
- **Etape2** : utilisation de règles logiques pour évaluer de nouvelles variables floues en sortie,
- **Etape3** : transformation de ces variables floues en variables qualitatives.

- **Etape 1 (Fuzzification)**

Variables d’entrée
- (e₁) Pourcentage Facile : pourcentage des réponses correctes aux questions de degré facile,
- (e₂) Pourcentage Moyen : pourcentage des réponses correctes aux questions de degré moyen,
- (e₃) Pourcentage Difficile : pourcentage des réponses correctes aux questions de degré difficile.

Variable de sortie (Niveau Connaissance : caractérisation qualitative de la connaissance de l'apprenant)
- (s) Niveau Connaissance : {Insuffisant, Moyen, Bon, Excellent},

La fuzzification ou définition des fonctions d’appartenance des variables d’entrée et de sortie consiste à déterminer pour chaque variable les valeurs linguistiques ainsi que la forme des fonctions d’appartenance et le degré d’appartenance à différents états que l’on doit définir.

Un ensemble flou est caractérisé par une fonction d'appartenance f : E → [0, 1], qui positionne les membres de l'univers de discours E dans l'intervalle d'unité [0, 1]. La valeur 0 signifie que le membre n'est pas inclus dans l'ensemble donné, 1 décrit un membre entièrement inclus. Les valeurs entre 0 et 1 caractérisent les membres flous. L'univers de discours d'une variable couvrira l'ensemble des valeurs prises par cette variable. Dans notre cas, l'univers du discours E correspond au pourcentage des réponses correctes, discrétisé en 11 éléments {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Pour un élément x de E, la valeur f(x) représente le degré d’appartenance de x à un sous ensemble flou.

Comme mentionné dans la partie 2.2, nous avons divisé l'univers de discours de chaque variable d’entrée en trois sous ensembles flous {Insuffisant, Moyen, Suffisant}.

Figure 2. Fonctions d'appartenance pour les variables d’entrée "Pourcentage Facile", "Pourcentage Moyen " et "Pourcentage Difficile" respectivement

Au total, on aura neuf sous-ensembles flous (Figure 2). Pour représenter les variables linguistiques des entrées, nous avons choisi la fonction d’appartenance de forme trapézoïdale.
L'Enseignant-Expert spécifie les degrés d'appartenance du niveau de la connaissance de l'apprenant à chacun des neuf sous-ensembles flous obtenus.

Les sous ensembles flous associés à la variable de sortie ‘Niveau Connaissance’ sont {Insuffisant, Moyen, Bon, Excellent} avec des fonctions d'appartenance en forme de raies (Figure 3).

La génération de la variable de sortie se fait par le système en utilisant la méthode du centre de gravité, selon laquelle le système calcule le nombre s qu'on arrondit au nombre entier le plus proche. Selon le résultat, nous faisons l'évaluation finale du niveau de connaissance de l'apprenant. Ainsi, si $(s) = 1$, nous caractérisons le niveau de connaissance de l'apprenant sur la matière comme 'Insuffisant', si $(s) = 2$ comme 'Moyen', si $(s) = 3$ comme 'Bon' et si $(s) = 4$ comme 'Excellent'.

![Figure 3. Fonctions d'appartenance pour la variable de sortie "Niveau Connaissance"](image)

Comme exemple, considérons le sous-ensemble flou "Connaissance Insuffisante" de l'entrée "Pourcentage Facile" (Figure 4).

Nous avons défini en collaboration avec l'Enseignant-Expert la fonction d'appartenance trapézoïdale comme suit :

\[
\begin{align*}
\text{Si } x & \leq 50\%, f(x) = 1 \\
\text{Si } 50\% < x \leq 60\%, f(x) = \frac{60 - x}{60 - 50} = \frac{60 - x}{10} \\
\text{Si } x > 60\%, f(x) = 0
\end{align*}
\]

pour $x = \{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}$: pourcentage des questions auxquelles l'apprenant a répondu correctement.

![Figure 4. Fonction d'appartenance du sous-ensemble flou "Connaissance Insuffisante" de l'entrée "Pourcentage Facile"](image)

Il en résulte que pour $x = 55$, la valeur de la fonction f est $f(55) = 0.5$: ceci signifie que le niveau de connaissance d'un apprenant qui a répondu à 55 pour cent des questions de type ‘Pourcentage Facile’ correctement, peut être considéré { Insuffisant } au degré de 0.5. Ces degrés d'appartenance du sous-ensemble flou "Connaissance Insuffisante du Pourcentage Facile" sont obtenus en posant à l'enseignant-expert des questions du genre " à quel degré vous considérez que le niveau de connaissance, d'un apprenant qui a répondu correctement à 55 pour cent des questions faciles, est insuffisant ? ".

- **Etape 2 (Base des règles)**

La conception d’une base de règles floues est un processus interactif. La plus grosse part de travail se trouve au niveau du recueil des connaissances expertes. Ainsi, en utilisant les données correspondant aux différentes entrées et sorties, l'enseignant-expert fournit une série de combinaisons qui se rapproche de son raisonnement. Un des intérêts de la logique floue est la possibilité de valider la base des règles auprès de ceux qui ont fourni l’expertise, avant de la tester sur un système réel.

Après cela, on établit les règles d’inférence de la forme : SI (Pourcentage Facile est Suffisant) et
(Pourcentage Moyen est Suffisant) et (Pourcentage Difficile est Moyen) ALORS (Niveau Connaissance est Bon).

- **Étape 3 (Défuzzification)**

A la fin de l’inférence, l’ensemble flou de sortie est déterminé, mais il n’est pas directement utilisable pour donner une information précise. Il est nécessaire de passer du "monde flou" au "monde réel", c’est la défuzzification.

Il existe plusieurs méthodes, dont la plus utilisée est le calcul du "centre de gravité" de l’ensemble flou. La valeur de la sortie (s) ‘Niveau Connaissance’, une fois évaluée au moyen de la base des règles, puis "défuzzifiée", donne une estimation du niveau de connaissance de l’apprenant en fonction du pourcentage des réponses correctes pour chacune des classes {Concept, Méthodologie, Outil, Transfert}.

Finalement, notre Système d’Aide à l’Apprentissage Individualisé en Autoformation à Distance (SAAID) sera doté d’une estimation qualitative de la connaissance de l’apprenant, lui permettant ainsi d’identifier ses lacunes et ses points faibles et de définir son parcours d’apprentissage en fonction de son niveau d’expertise initial.

3 - RESULTATS DE L’EXPERIMENTATION

Nous présentons dans cette partie les données provenant de l’expérience que nous avons effectué visant à évaluer la méthode de positionnement proposée. Plus précisément, les réponses que les apprenants ont données lors d’une "évaluation test", ont été utilisées afin de vérifier la validité des performances de notre Module Positionnement.

A cette fin, la sortie ‘Niveau Connaissance’ de l’apprenant, issue du Module Positionnement, a été comparée avec l’évaluation d’un enseignant-expert et avec le simple processus d’évaluation basé sur le calcul du pourcentage des réponses correctes, méthode adoptée dans de nombreux systèmes éducatifs.

L’expérience a eu lieu en Novembre 2007. Soixante étudiants issus d’une licence et qui ont intégré le Master Spécialisé Télécommunications et Réseaux ont participé à cette expérience. Ils ont été invités à passer le test d’évaluation correspondant à la discipline "Réseaux Haut Débit Multimédia".

Nous disposons d’un ensemble hétérogène d’étudiants de point de vue pré requis (Informatique, Electronique, Télécoms et Réseaux) par rapport au domaine en question. Le test d’évaluation comportait 144 questions réparties sur les trois niveaux de difficulté {Facile, Moyen, Difficile} pour une durée de deux heures.

Dans cette "évaluation test", le professeur du cours a eu le rôle de l’Enseignant-Expert. Une fois l’expérience était terminée, il a examiné les réponses des apprenants au test de positionnement et a évalué leurs niveaux de connaissances sur le sujet, en tenant compte du nombre, du type et de la difficulté des questions auxquelles ils ont répondu correctement (Colonne1, Figures 5a et 5b).

En se basant sur l’approche proposée, le Module Positionnement estima le niveau de connaissance de chaque apprenant sur le sujet (Colonne2, Figures 5a et 5b).

D’autre part, nous avons estimé le niveau de connaissances des apprenants en se basant sur le principe du pourcentage traditionnel des réponses correctes considérant toutes les questions au même degré de difficulté (Colonne3, Figures 5a et 5b), c'est-à-dire si le pourcentage des réponses correctes se situe entre :

- 0% et 25% alors le niveau de connaissance est considéré comme Insuffisant ;
- 26% et 50% alors le niveau de connaissance est considéré comme Moyen ;
- 51% et 75% alors le niveau de connaissances est considéré comme Bon ;
- 75% et 100% alors le niveau de connaissances est considéré comme Excellent.
L'axe vertical des figures 5a et 5b ci-dessus indique le niveau de connaissance (caractérisation qualitative de la connaissance de l'apprenant) : {Insuffisant, Moyen, Bon, Excellent} qui correspond directement à {1, 2, 3, 4}.

D'après les résultats obtenus, on peut observer que les estimations faites par le Module Positionnement et celles du professeur coïncident dans 92 (en pour cent) cas d'apprenants (Figure 6). Par contre, seulement dans 60 (en pour cent) cas d'apprenants, les estimations de l'enseignant sont les mêmes que celles basées sur le pourcentage traditionnel des réponses correctes (Figure 7).

L'ensemble de ces constats nous a permis de vérifier que le modèle basé sur la logique floue utilisé apporte une amélioration notable aux résultats de l’estimation du niveau de connaissance de l’apprenant. En effet, notre Module Positionnement de l’apprenant permettait de réduire l’écart de l’estimation par rapport l’Enseignant-Expert de 40% (modèle traditionnel) à 8% (notre approche).
Ces résultats démontrent que l’approche proposée dans notre système est plus pertinente que le principe du pourcentage traditionnel. Ils indiquent que SAAID peut en effet effectuer l’évaluation "comme procède" un enseignant-expert grâce à son Module Positionnement.

4 - CONCLUSION

Dans cet article, nous avons présenté une méthode de positionnement de l’apprenant pour SAAID, Système d’Aide à l’Apprentissage Individuel en auto formation à Distance, dans le contexte des Environnements Informatiques pour l’Apprentissage Humain.

Le processus d’évaluation du niveau de connaissance de l’apprenant est influencé entre autres par l’imprécision due aux erreurs et aux approximations impliquées lors du recueil de l’information. Comme méthode de traitement de ces imperfections et d'incorporation de l'expertise de l’enseignant dans l'évaluation de l'apprenant, nous employons une approche basée sur la théorie des ensembles flous.

Grâce au Module Positionnement, l’estimation de la connaissance de l'apprenant sera aussi proche que possible de celle d’un enseignant-expert, afin de déterminer le meilleur point d’entrée par lequel l'apprenant peut commencer pour atteindre l’ensemble des objectifs pédagogiques liés au domaine d'apprentissage.

Les résultats expérimentaux ont été encourageants, même effectués sur un groupe d'essai limité et montrent que le positionnement de l’apprenant par la méthode proposée est proche des estimations de l’Enseignant-Expert.

BIBLIOGRAPHIE

Bloom, B. (1971), Handbook on formative and summative evaluation of student learning. Cité dans : "Quelques éléments fondamentaux sur l'évaluation” disponible en ligne :

Özbek, M. Kuzucuoğlu, A.E. & Gürbüz, A. (2003), "Student assessment in an intelligent tutoring system ", *International XII Turkish Symposium on Artificial Intelligence and Neural Networks – Tainn.*
