
THE AUDITORY CONSISTENCY IN DISTRIBUTED MUSIC PERFORMANCE:
A CONDUCTOR BASED SYNCHRONIZATION

Nicolas Bouillot,
Doctorant en services systèmes pour le multimédia

CNAM-CEDRIC, 192 rue St Martin, 75141 Paris Cedex 03
bouillot@cnam.fr, + 33 1 58 80 85 47

Abstract: With the growth of interactive multimedia streaming on Internet, we expect to provide a
tool making remote musicians play together in real-time and across the Internet. However, real-time
streaming deals with delays, producing among musicians what we call an auditory inconsistency. As
we will show, this inconsistency disables the collective musical practice. In this paper, our conductor
driven scheme provides the auditory consistency property among chosen participant of the musical
performance. This synchronization scheme hides the network latency to the musicians and enables the
distributed collective musical practice.

Résumé : La croissance des systèmes de transmission de flux multimédia interactifs nous laisse
envisager la possibilité de fournir à des musiciens géographiquement éloignés un médium permettant
de jouer de la musique ensemble en temps réel. Cependant, le streaming de flux multimédia introduit
des délais de bout en bout. Parmi les musiciens distants, ces délais provoquent ce que nous appelons
une incohérence auditive. Comme nous allons le montrer, cette incohérence empêche les musiciens de
jouer de la musique collectivement. Dans cet article, notre mécanisme orienté chef d’orchestre fournit
la propriété de cohérence auditive entre différents musiciens choisit. De plus, ce mécanisme cache
complètement la latence introduite par le réseau aux musiciens et rend possible le jeu musical collectif
distribué.

Key words: Musical interactivity, real-time, PCM audio streaming, synchronisation, distributed
system.

Mots clés : Interactivité musicale, temps réel, flux audio PCM, synchronisation, système distribué.

The auditory consistency in distributed music performance:
a conductor based synchronization

1 - INTRODUCTION

1.1 - The distributed virtual concert project
This project comes from the collaboration
between IRCAM's and CNAM-CEDRIC's
research laboratories. It may enable a real-time
orchestra of remote musicians.

Fig 1. The distributed virtual concert

Figure 1 shows the general architecture of the
distributed concert project. Remote musicians
play together in real time, hearing each other
through PCM audio streams. The different
parts of the music (played by others) are heard
after synchronization in the side fills of these
streams. This allows them to play a real time
and collective musical piece. In order to
preserve local rhythms and audio quality in the
streaming engine, latencies between musicians
are kept constant. The public can hear the
concert thanks to a sound engineer who
performs remote control of the audio streams
parameters as volume, localization in space,
etc (see locher (2003)). In this way, he controls
the streaming engine that achieves a traditional
and spatial mixing. Spatial mixing consists in
placing sources on a three dimensional space
(then the sound is multi-channel). We focus
here on the synchronization scheme among
musicians and particularly on the way to play
music according to the network constraints.

1.2 - The distributed auditory consistency
problem
We will first show some differences between
the traditional music practice in a band, i.e.
when all musicians are in the same room, and
the musical practice across the network. Then,

we will define the distributed auditory
consistency property.

Traditionally, the musical interaction is helped
by various visual signs and conventions
predetermined on the piece of music played
(such as a sequence of chords with a theme for
a piece of Jazz). At the same time, the musical
contents added by each musician inform the
others on the possible evolution of the piece.
For example, groups of percussions sometime
use rhythmic sentences to call each other to
change rhythms. These kinds of interactions
are possible due to the instantaneous hearing of
the sound produced by each musician. For
instance, if a bassist and a drummer play
rhythms at the same time, everybody in the
room will hear them together. We will next
differentiate the direct sound produced by each
musician and the side fills given by the
environment. This allows us to consider the
environment latency as the latency between the
direct sound and the side fills. In a room, the
environment latency exists due to the sound
transmission delay in the air but it is not
audible. In our work, we consider 20ms as the
auditory delay perception threshold. As this
latency cannot be heard musicians could
synchronously feel the time as structured
musical units (bars, quarter notes, triplets…).
This common musical language gives them the
opportunity to play synchronously their own
part on the global performance. The
environment keeps then the property we call
the consistent auditory restitution. We can thus
say that playing music with interaction is
possible in a synchronous environment.

In our context of distributed “Live” music
where the musicians are physically remote,
networks and operating systems are
asynchronous with audible and different
latencies. Sound card, network, drivers and
application provision the global latency. Let us
show now why latencies impact on the
consistent auditory restitution. Consider on
figure 2 two musicians (Alice and Bob) who
want to play across a network with perceptible
delays.

Fig 2. The auditory consistence problem

First, Alice is playing a sound at the time we
call “A1”. When this sound is returned to Bob
at “B2”, he is playing another sound. At this
time, Bob hears the sounds «A1» and «B2»
simultaneously. But he has to send to Alice his
sound produced at “B2”. It is returned to Alice
when she is producing the “A4” sound. This
makes Alice hears the sound “A4” and “B2”
simultaneously. As “B2” is mixed with
different sounds for Bob and Alice, we can say
that they are not living the same experience of
the musical piece. This is what we call an
inconsistent auditory perception of the music.
It is then difficult to get a common rhythmical
language. Suppose that Alice is a drummer and
Bob is a bassist. If Bob feels himself
rhythmically synchronized with the drums
pattern, Alice will feel Bob out of the rhythm.
Therefore she will adjust her rhythm in order
to be synchronous with Bob but that will cause
a de-synchronization at Bob’s side-fills, with a
snowball effect.

1.3 - Solutions
To avoid this problem, we propose to add a
mechanism that provides the consistent
restitution. We distinguish two kinds of
solutions. Bouillot (2003) has described the
first one. This solution consists in adding
consensually delays in each musician’s side
fills, making each musician hears himself with
a constant latency. There are situations where
musicians are able to play with some delays,
like organists interacting with a choir in
church. But the musicians have to learn to play
with this latency, limiting the spectrum of
musical style possible. The second solution is
presented in this paper (section 3) and it is
called the “conductor synchronization
scheme”. This solution gives to the musicians
a synchronous side-fill with a zero-local
latency perception. As a side effect, each site
can hear only his own produced stream with
the one coming from the conductor.

On section 2, a state of the art is given with
short comparisons with our synchronization
scheme. We will next present our “conductor”
based solution. Then we will present the
current status of the prototype in section 4 and
to finish, we will conclude in section 5.

2 - STATE OF THE ART

Several experiments of real time multimedia
performances on Internet have already been
achieved. Most of them use the MIDI standard
(Musical Instrument Digital Interface). In
Eliens (1997), latency between the production
and the consumption of sounds is not designed
to be constant so, variations are perceived
while hearing. In the piano lesson system of
Young (1999) and Fujinaga, a single musician
is teaching while the pupils are listening. Then,
there is no need here to play in a synchronized
way. The team of Goto (1996, 1997)
developed VirJa, a tool of virtual session of
Jazz in which someone can play music with
two processors, but there is no mechanism of
synchronization of streams specified. An
experiment of remote music was born based on
RMCP (Remote Music Control Protocol) used
in VirJa: OpenRemoteGIG (Goto (2002))
allows playing with remote musicians with
MIDI streams and constant latency (an entire
chord sequence). In this system, the musicians
from various places will hear all the musicians
but none of them hears the same resulting
music. The example describes in Goto (1997)
shows us this shift: the player improvises while
listening to other sounds delayed by the
constant period of the repetitive chord
progression (a 12-bar blues chord progression
in the text). Because the progression is
repetitive, the delayed performance can fit the
chords. In this way, musicians can play in a
synchronous way. They will hear themselves
instantaneously but simultaneously with the
other delayed by the 12-bar latency. We can
say that this work is done without a distributed
auditory consistence and with a big latency
reducing the interactivity between musicians.
Despite the interest that such performances
represents, the MIDI protocol allows to put
aside some aspects of the transmission of PCM
audio streams. MIDI takes less bandwidth
thanks to its descriptive format but it also
decreases the field of the transported sounds.
Thus, it is difficult to make a direct analogy

with the constraints raised by PCM audio
streams. Among all of these papers no one
deals with the distributed auditory consistency
problem or something equivalent.

Xu (2000) and Cooperstock (2001) have tested
the transport in real time of PCM audio
streams created on fly. The authors used a
recording studio to sample a performance that
took place in another country. The musicians
were located at the same place, raising no
problem on interactions between musicians.

The closest work done by another team is the
“SoundWire” project. They experienced the
streaming of professional-quality audio across
the Internet2 network (see Chafe (2000)). Few
LAN and WAN experiments were deployed in
the United States, where round trip time was
about a 2 factor slower than the speed of the
light. In these experiments, the main musical
goal was to see how musicians could play with
latency introduced by the network. As these
latencies were closed to the one perceptible by
the ear, the musicians could progress together
in the musical piece but not rhythmically
synchronous (see SoundWire (2002) Live
WAN test audio examples). The reason is that
they did not include any musical
synchronization in their streaming engine. In
comparison with our experimental context, we
are working on Internet with bigger round trip
times. But even with the smallest delays
possible (the light speed), “the theoretical
round trip time across USA and back is
approximately 40msec”. We take 20msec as
the perceptible latency between two clicks
delayed. This threshold is stated also by
simulated delay tests from Schuett (2002)
audio examples. We hear that with a 20ms
delay, musicians can play together but with a
30ms delay, we can hear a difference between
the side-fills of the two musicians. This let us
imagine perceptible delays with bigger
distance. Schuett’s thesis (2002) tries to
“define the level of delay at which effective
real-time musical collaboration shifts from
possible to impossible”. The author talks about
a leader-follower relationship between
musicians. However, this relationship is
different from the one presented in our work.
In the Schuett’s study, two performers are
subject to symmetric delays added with a
digital mixing console. He remarks that the
musicians can play together if one of them
follows rhythmically the other one. This

relationship is based on the musicians’
behavior. We point out that in our work, we
synchronize the audio streams thank to the
streaming engine and the time stamping.
Remote performers are then subject to delays
that could be asymmetric. This is here the
synchronization scheme which is conductor
driven.

3 – THE SYNCHRONIZATION SCHEME

3.1 – Justification of such an architecture
Playing music in a band is itself a hard task.
Then we want to minimize the difficulties
added by the streaming engine. Playing music
with remote musicians avoids social
interactions as looking to the other musicians,
hearing them instantaneously… In order to
provide an easier practice of the remote
playing, we believe that musicians have to be
in a synchronous musical environment. This
immersion is possible if we include
synchronization mechanisms in each local
musician’s side-fills. We thus have to consider
things like: “what does each musician should
hear?” In Bouillot (2003), we supposed that
each musician hears each other to keep a
musical interaction. But it depends on the kind
of music, especially when the entire band must
communicate. This approach provides a good
interactivity among the musicians but the side
effect of keeping each stream in the side-fills is
that the local sound is delayed too. The
musical practice becomes then more difficult,
but still possible. The idea we present here is
quite different: the musicians will hear only
two streams, the one from the conductor and
the one from themselves. This is acceptable
with some kinds of music where there is a little
interaction between musicians. This is the case
of many written music where the most
important interaction is the one with the
conductor. Symphony is a good example: in a
symphonic orchestra, musicians are looking at
the conductor and at the same time they are
hearing their neighbors to play music. We can
find some other examples as the Mugam of
Azerbaijan, one of the liveliest Orient’s
classical musical styles. Bois (1993) explains
that this music requires « a singer, […] and
two musicians (sazande) playing on the luth
(târ) and the spike-fiddle (kemânche). The târ
converses directly with the sung phrases, while
the kemânche sometimes sustains the singer

sometimes the târ player». Then, the singer
needs to hear the târ player. The târ player
needs to hear the singer but the kemânche
player stream is not necessary at the other's
side fills to play in a synchronous way. At the
question “what do musicians hear? » our
conductor synchronization scheme answers
that each musician must hear his own produced
sound and the conductor sound. In this way,
we can make easier the distributed musical
practice. To compare that with our previous
work, this avoids the local latency and also the
interaction between musicians. With this
conductor driven scheme, we can distribute the
Mugam’s musicians by associating the târ
player with the singer as the conductor and the
kemânche player as a musician. Thus the
kemânche player can play without local
latency.

3.2 - Description

Fig 3. The conductor architecture

The idea behind the conductor driven
architecture is quite simple. The conductor
broadcast his own sound, for instance a beat,
time stamped with the local sound card’s
clock. Helped by the streaming engine, the
musicians can hear the sound sent by the
conductor. It is easy now for all of them to
play synchronously with the beat heard on the
side-fills. As musicians got a global reference
(the conductor’s stream), it is able to mix all
the streams in a synchronous one. In order to
do that, each musician’s sample are time
stamped with the stamp of the conductor’s
sample perceived simultaneously. The
conductor (or someone else) could receive

each stream and mix them in the synchronous
way by playing simultaneously the samples
having the same timestamp. To keep
interactivity in the musical piece, the
conductor can mix his own beat with his voice
to indicate to musicians how the musical piece
will change.

Let’s call the number of musicians, n
)n0(imi <≤ a musician, c the conductor,

 thext x ’s local sound card clock, a sample

produced by

j
xs

x at t jx = and t the time

when is processed (produced, consumed or

both) by t . If

)j
Ys(x

j
ys

x yx = , then is produced by

. We can thus say that say t and

but that (the sample comes from
another source. So it is here stamped by
another clock). We call now e the

timestamp associated to the sample (in the

musician ’s output stream). According to
the PCM audio streams semantic, sound card
sample production and time stamping respect
local order. Timestamps and sample produced
at the sound card’s clock are thus incremented,
i.e.

j
ys

xt
t x (

m

j=

)j
mi

j
mi

s j
x)

(mi

s

x (

s

js j
y)

i

≠

)(1)(1+==+ j
xx

j
xx stst

and

)(1)(1+==+ j
mm

j
mm iiii

sese

These considerations suppose that the remote
sound cards are running at the same sample
rate. If not, a conversion can be added.

Fig. 4. The streams in the conductor driven scheme

As Figure 4 shows, in the conductor
architecture, the conductor broadcast his own
sound. Each musician receives thus all the
samples as a stream (Figure 4 shows us the
sample CO1 broadcasted to the musicians).
With that stream, each musician gets samples

j
cs

(with the timestamps associated) to play out.
The main objective for them is now to
timestamp their own stream with the values
that allow the conductor to mix them and get a
resulting mix synchronized. Locally to , the
input stream coming from the ’s instrument
and the stream coming from the conductor are
processed by the same clock (t). Then for

each musician , for each locally produced
sample, the timestamp associated is

where:

im

)

)

im

m

t=

1

1

−

−

n

n

k
m

(
1−nm

i

mi

)

s

im

j

)0

0

k
ms

(
0

k
ms

)(k
mm ii

se

se k
mm ii

(with =) ()(j
c

k
mm sst

ii

On figure 4, the A1 and B1 timestamp are set
to CO1. After the timestamp calculation, each
musician will send his produced sample with
the associated timestamps to the conductor,
who will mix the streams as:

(...(== cc stt

where ...) 1

1

0

0

−

−
== n

n

k
mm ee

The conductor mixes these samples to hear
them or to send the mix to listeners (Figure 4).

If musicians play synchronously with the
conductor stream (the global reference), the
mix will be synchronous. To keep an
interaction between the conductor and the
musicians, the conductor has to hear the
resulting music, which includes a rhythmic de-
synchronization between his side-fills and his
direct sound. Therefore, he can send a pre-
recorded sound (a beat for example) and hear
the mix only, avoiding the problem. Another
solution is to take two people as the conductor:
one plays the synchronization stream and the
other one hears the mix to give the indications.
In this way, we expect a minimal latency from
musicians to the conductor.

We can notice now that musicians do not
perceive the network latency: they are just
playing with a received stream. However, the
conductor can hear all of them and perform the
interactivity by giving them indications.

3.3 - Bandwidth requirement
A mono PCM stream with a 44100Hz sample
rate sent with RTP (Schultzrinne (1998))
represents 0,7Mb/s. As we use IP multicast in
our streaming engine, the conductor need to

send 1 synchronization stream and need to
receive streams from the musicians. The
conductor thus needs a 0,7Mb/s upload
bandwidth and a

n

n×7,0 download bandwidth.
Each musician needs 0,7Mb/s as upload
bandwidth (his own produced sound) and
0,7Mb/s as download bandwidth (the
conductor stream). Nowadays, these
bandwidth requirements are too big to place
the conductor on a DSL connection at home
but not to play through academic Internet
providers, which is our actual experimentation
context.

3.4 – Combination with previous work
The conductor architecture fits well with the
music where there are little interactions
between musicians. It provides a null latency
perception to the musicians. Bouillot (2003)
focus on interactions between all the musicians
and includes latency in the perception of the
local produced sound. These two kinds of
interactions have advantages and
disadvantages but are not incompatible. We
can take the advantages of both, thanks to an
appropriate distribution of the roles between
each musician in a band, according to the
expected interactions. For example, the
resulting music of a group of musicians that
interacts with the self-synchronization
algorithm (see Bouillot (2003)) music could be
the synchronization stream in the conductor
architecture. The other musicians can then play
with this synchronization steam in a
“conductor” oriented way. Therefore, by
coupling both synchronizations, the solution to
the auditory consistence problem can be
generalized with two levels of added
difficulties at the musicians’ instrumental
practice.

4 – CURRENT STATUS

We have not implemented yet the conductor
driven scheme in our prototype. However, as
we will show, our streaming engine is modular
and can be easily extended with the conductor
driven scheme.

4.1 – The Streaming engine
We developed the streaming engine as part of
the jMax (Déchelle (2000)) visual language.
Figure 5 shows a jMax patch example. This

visual language works with a message oriented
semantic. For instance, a modification on the
slider will send an integer to the division
object, which will process the division by 127.
By implementing reception and emission of
audio streams as a function of this language,
we can easily route the different audio streams,
as generated music, microphone input stream,
speakers output stream or received streams.
jMax allows us to process sound in real-time
and gives us a modular approach to configure
the streaming engine.

Fig 5. The rtp objects in a jMax visual program

In our first prototype, the reception of audio
streams has been achieved with the rtpin object
developed in jMax (figure 5) and the emission
in the rtpout object. The sound samples are
produced at a constant rate of 44100Hz and
consumed by the rtpin objects (at the same
rate). The transport of audio streams is done
using the RTP protocol (Schulzrinne (1998)),
through the RTP library called UCL Common
Code Library version 1.2.8 developed by the
Computer Science Department of the
University London College University. Each
rtpout object stamps the samples in the RTP’s
timestamp field. The timestamp is incremented
per sample. Helped by the RTP’s ssrc field, we
get the music source identification. Each rtpin
object consumes simultaneously a sample
coming from each rtpout remote object.

4.2 – Implementing synchronization
In our prototypes, we deployed the
synchronization described in Bouillot (2003).
We tested successfully this kind of
synchronization on LAN (jMax 2.5.1) and on
MAN (with a second prototype deployed on
jMax 4.1) where the musicians played a
distributed Blues in a synchronous way with a
synchronized start. Drums/bass were located at

the IRCAM center and guitar/saxophone at the
CNAM University with a distance of one
kilometer across two Internet providers.

In our second prototype we took only one
object for both reception and emission. With
this implementation, we have local sound card
clock, time stamping, streaming and a shared
space to read and write samples on the sound
cards. Then, we can easily implement our
conductor driven synchronization scheme.

5 - CONCLUSION AND FUTURE WORKS

We have seen that the major interest here is to
provide a way for distributed musicians to play
without any network latency perception. In all
the other distributed musical systems, the
instrumental playing deals with delays,
including an alteration in the instrumental
practice. Although our conductor driven
architecture focuses the musicians on the
conductor, it makes the distributed musical
practice easier for musicians and keeps the
auditory consistency among people interacting
together. We can then provide a more generic
solution to the distributed way of playing
music with a combination of the conductor
architecture and the self-synchronization
algorithm described in a previous work (see
Bouillot (2003)). This new solution would
make the system’s architect define interaction
between musicians, allowing each of them to
one of both synchronizations schemes
discussed before. However, this combination
introduces some alterations on the traditional
way of playing music. This introduces two
kinds of musical experimentations. The first
one is to try to project existing kinds of music
on our solution. The second is to work with
composers and musicologists to develop a new
kind of musical interaction, which would be
aware of these synchronization schemes. As a
side effect, the solution to the auditory
consistency problem could fit well with some
distributed virtual reality problems.

Added to the developments, we will achieve
tests with bigger distances with more sites. The
work of experimentation will be supplemented
by a network provisioning. The guarantee of
constant latency between the musicians and the
conductor has a basically statistical nature.

In the future, it will be necessary to take
account of the losses and to choose a strategy

among the mechanisms presented in Perkins
(1998), Bolot (1999) and Rosenberg (1998) or
in the literature where the main challenge is to
compensate losses without retransmissions.

The last work in progress is the skew existing
between the clocks of the different sound
cards. This skew occurs between the emission
time stamping clock (the sound card) and the
reception clock. The problem is a many-to-
many one. Orion (2000), Akester (2002) and
Fober (2002) present a solution but in a one-to-
one context.

However our priority is to make tests on larger
network as MAN and WAN. On one hand, this
will allow to dimension our prototype and on
the other hand, to determine more precisely the
kind of interactions that we will provide to the
remote musicians.

REFERENCE

Akester R., Hailes S. (2002), “A New Audio Skew
Detection and Correction Algorithm”.
In proceedings of the International
Computer Music Conference, ICMC
(2002).

Bois Pierre (1993), “The Mugam of Azerbaïdjan”.
In Sakine Ismaïlova, Anthologie du
Mugam d’Azerbaïdjan, Vol. 5 booklet.
CD n. w260049, INEDIT collection.
Maison des Cultures du Monde

Bolot J.C., Fosse-Parisis S., Towsley D. (1999),
“Adaptive FEC-Based Error Control
for Internet Telephony”. INFOCOM,
vol 3, pages 1453-1460 (1999).

 Bouillot N. (2003), “Un algorithme d'auto
synchronisation distribuée de flux
audio dans le concert virtuel réparti”.
Proceedings of the conférence
française sur les systèmes
d’exploitation CFSE’03, La Colle Sur
Loup, France (2003).

Chafe C., Wilson S., Leistikow R., Chisholm D.,
Scavone G. (2000), “A Simplified
approach to high quality music and
sound over IP”. Proceedings of the
COST G-6 Conference on Digital Audio
Effects (DAFX-00), Verona, Italy,
December 7-9, 2000

 Cooperstock J., Spackman S. (2001), “The
Recording Studio That Spanned a
Continent”. IEEE International
Conference on Web Delivering of

Music, WEDELMUSIC, Florence
Italie (2001).

Déchelle, F., Borghesi, R., Orio, N., Schnell, N.,
« The jMax environment: an overview
of new features », ICMC:
International Computer Music
Conference, Allemagne, 2000.

Diot P., Huitema C., Turletti T. (1995),
“Multimedia Applications should be
Adaptive”. Proc. HPCS'95, Mystic
(CN) (1995).

Eliëns A., van Welie M., van Ossenbruggen J.,
Schönhage B. (1997), “Jamming (on)
the Web”. Proceedings of WWW6
(1997).

Fober D., Orlarey Y., Letz S. (2002), “Clock Skew
Compensation over a High Latency
Network”. Proceedings of the
International Computer Music
Conference, 548-552 (2002).

Goto M., Hidaka I., Matsumoto H., Kuroda Y.,
Muraoka Y. (1996), “A Jazz Session
System for Interplay among All
Players”. ICMC Proceedings, pages
346-349 (1996).

Goto M., Neyama R. (2002), “Open RemoteGIG:
An Open-to-the-public Distributed
Session System Overcoming Network
Latency”. IPSJ JOURNAL, vol 43,
pages 299-309, IN JAPANESE
(2002).

Goto M., Neyama R., Muraoka Y. (1997), “RMCP:
Remote Music Control Protocol,
design and applications”. ICMC
Proceedings, pages 446-449 (1997).

Locher H-N., Bouillot N, Becquet E., Dechelle F.,
Gressier-Soudan E. (2003),
”Monitoring the Distributed Virtual
Orchestra with a CORBA based
Object Oriented Real-Time Data
Distribution Service”. In
proceedings DOA'03 International
Symposium on Distributed Objects
and Applications. Catagna, Italy.
November., 2003.

Orion, Hodson, Colin (2000), “Skew Detection and
Compensation for Internet Audio
Applications”. (2000).

Perkins C., Hodson O., Hardman V. (1998), “A
survey of packet-loss recovery
techniques for streaming audio”. IEEE
Network Magazine (1998).

Rosenberg J., Schulzrinne H. (1998), “An RTP
Payload Format for Generic Forward

Error Correction”. Internet-Draft
draft-ietf-avt-fec-03.txt (work in
progress) (1998).

Schuett N. (2002), “The effect of latency in
ensemble performance”. Thesis,
CCRMA, department of music.
Stanford University.

Schulzrinne, Casner, Frederick, Jacobson (1998),
“RTP: A Transport Protocol for Real-
Time Applications”. RFC 1889
(1998).

SoundWire home page (2002), http://ccrma-
www.stanford.edu/groups/soundwire/

Xu A., Cooperstock J. (2000), “Real-Time
Streaming of Multichannel Audio
Data over Internet”. AES 108th
convension, Paris (2000).

Young J.P. ,Fujinaga I. (1999), “ Piano master
classes via the Internet ”. Proceedings
of the International Computer Music
Conference, pages 135-137 (1999).

	the auditory consistency in distributed music performance: �a conductor based synchronization
	
	
	
	
	
	Nicolas Bouillot,
	Doctorant en services systèmes pour le multimédi
	bouillot@cnam.fr, + 33 1 58 80 85 47

	The auditory consistency in distributed music performance:�a conductor based synchronization
	
	1 - INTRODUCTION
	1.1 - The distributed virtual concert project
	1.2 - The distributed auditory consistency problem
	1.3 - Solutions

	2 - STATE OF THE ART
	3 – THE SYNCHRONIZATION SCHEME
	3.1 – Justification of such an architecture
	3.2 - Description
	3.3 - Bandwidth requirement
	3.4 – Combination with previous work

	4 – CURRENT STATUS
	4.1 – The Streaming engine
	4.2 – Implementing synchronization

	5 - CONCLUSION AND FUTURE WORKS
	REFERENCE

