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Résumé : Les systèmes de reconnaissance de la parole utilisant des modèles acoustiques dépendants 
du locuteur sont plus performants que ceux basés sur des modèles indépendants du locuteur. Le but 
des techniques d'adaptation est d'améliorer ces derniers modèles pour s'approcher des performances 
obtenues avec un modéle dépendant du locuteur. Dans cet article, nous proposons deux nouvelles 
méthodes d'adaptation. La première utilisant les données de test et d'apprentissage pour adapter les 
modèles indépendants du locuteur, la seconde étant une technique d'adaptation basée sur une 
classification hiérarchique des gaussiennes composant le modèle acoustique. Ces stratégies 
d'adaptation ont été évaluées sur le corpus de test de l'AUPELF, ARC B1. Ces deux techniques 
permettent respectivement un gain relatif par rapport au système initial de 15% pour la première 
technique et de 16% pour la seconde. 

Summary : The speaker-dependent HMM-based recognizers gives lower word error rates in 
comparison with the corresponding speaker-independent recognizers. The aim of speaker adaptation 
techniques is to enhance the speaker-independent acoustic models to bring their recognition accuracy 
as close as possible to the one obtained with speaker-dependent models. In this paper, we propose two  
new method: the first method operates in two steps using test and training data and the second is a 
hierarchical These adaptations strategies were evaluated in a large vocabulary speech recognition task. 
The first method leads to a relative gain of 15 % with respect to the baseline system and 10 % with 
respect to the conventional MLLR adaptation, whereas the second leads to a relative gain of 16% with 
respect to the baseline system. 

Mots clés : Communication Homme-Machine, Reconnaissance automatique de la parole, modèles 
acoustiques, adaptation au locuteur. 

Key words : Human-computer communication, Automatic speech recognition, acoustic models, 
speaker adaptation. 

 1



Speech Recognition: New techniques for speaker adaptation 
  

The speaker-dependent HMM-based 
recognizers have lower Word Error Rates 
(WER) than speaker-independent ones. In fact, 
modeling inter-speaker variability is usually 
performed by training acoustic models with as 
large as possible population of speakers. This 
training manner leads to a relative high 
variance in acoustic models and hence reduces 
discriminatory capabilities between different 
phonemes, especially in the context of larger 
perplexity tasks. Nevertheless, in the speaker-
dependent case, the requirement of large 
amount of training data for each test speaker 
reduces the utility and portability of such 
systems. 

The aim of speaker adaptation techniques is to 
enhance the speaker-independent acoustic 
models to bring their recognition accuracy as 
close as possible to the one obtained with 
speaker-dependent models. 

In this paper, we will present two different 
approaches to increase the robustness of 
speech regnonizer with respect to the speaker 
acoustic variabilities. The first one is a method 
using test and training data for acoustic model 
adaptation . This method operates in two 
steps : the first one performs an a priori 
adaptation using the transcribed training data 
of the closest training speakers to the test 
speaker. This adaptation is done with MAP 
procedure allowing reduced variances in the 
acoustic models. The second one performs an a 
posteriori adaptation using the MLLR 
procedure on the test data, allowing mapping 
of Gaussians means to match the test speaker’s 
acoustic space. This adaptation strategy was 
evaluated in a large vocabulary speech 
recognition task. Our method leads to a relative 
gain of 15% with respect to the baseline 
system and 10% with respect to the 
conventional MLLR adaptation. 

The second method presented in this paper is 
based on tree structure. Within the framework 
of speaker-adaptation, a technique based on 
tree structure and the maximum a posteriori 
criterion was proposed (SMAP)[15]. In SMAP, 
the parameters estimation, at each node in the 
tree is based on the assumption that the 
mismatch between the training and adaptation 
data is a Gaussian PDF which parameters 

 

are estimated by using the Maximum 
Likelihood criterion. To avoid poor 
transformation parameters estimation accuracy 
due to an insufficiency of adaptation data in a 
node, we propose a new technique based on 
the maximum a posteriori approach and PDF 
Gaussians Merging. The basic idea behind this 
new technique is to estimate an affine 
transformations which bring the training 
acoustic models as close as possible to the test 
acoustic models rather than transformation 
maximizing the likelihood of the adaptation 
data. In this manner, even with very small 
amount of adaptation data, the parameters 
transformations are accurately estimated for 
means and variances. This adaptation strategy 
has shown a significant performance 
improvement in a large vocabulary speech 
recognition task, alone and combined with the 
MLLR adaptation. 

1 – ADAPTATION USING TEST AND 
TRAINING DATA 

1.1 – Introduction 
To deal with inter-speaker variability, two 
classes of approaches have been studied. The 
first one consists in performing normalization 
in the feature space. This class contains the 
cepstral mean removal technique [1], the vocal 
track length normalization [2], a feature space 
normalization based on mixture density 
Hidden Model Markov (HMM) [3], and a 
signal bias removal estimated by Maximum 
Likelihood Estimation (MLE) [4]. 

The second class of approaches operates in 
acoustic model space. In this class a compact 
model for Speaker Adaptative Training (SAT) 
technique was introduced in [5]. This 
technique consists in modeling separatelly the 
speaker variation and removing its effect in the 
training data. Thus the variance of models is 
reduced and hence the overlap of the acoustic 
models. The most used techniques in the 
second class consist in adapting the speaker-
independent models to a specific speaker so as 
to obtain a recognition accuracy as close as 
possible to the one obtained on speaker-
dependent system. In this framework, many 
adaptation schemes have been proposed: in [6] 
Maximum A Posteriori (MAP) estimations 
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techniques were proposed. It attempts to obtain 
a Bayesian estimate of the model parameters 
using adaptation data available from the test 
speaker. In [7] the speaker-independent system 
is transformed to come closer to the test 
speaker by applying a linear transformation on 
the means of speaker-independent Gaussians. 
The transformation is estimated so as to 
maximize the likelihood of the test speaker’s 
adaptation data. 

Other adaptation schemes are based on the fact 
that the training data contains a number of 
training speakers, some of whom are 
acoustically closer, to the test speaker, than the 
others [8]. This technique uses the adaptation 
data to find a subset of the training speakers 
which are closer to the test speaker. And then, 
it compute and apply a linear transformation to 
map the acoustic space of each selected 
training speaker closer to the test speaker’s 
acoustic space. The linear transformation is 
computed by using the MLLR procedure [9]. 

In this paper, we propose a method using 
training and test-data for acoustic model 
adaptation. There are two steps in this method: 
the first one performs an a priori adaptation 
using transcribed training data with MAP 
adaptation. The second one performs an a 
posteriori adaptation using test data with 
MLLR adaptation. Both modifications have 
different goals: the former allows a reduced 
variance in acoustic models whereas the latter 
allows a mapping of the acoustic models 
means to be closer to the test speaker’s 
acoustic space. 

In the next section we present the proposed 
adaptation method. We describe the goals and 
the strategies for the a priori and the a 
posteriori speaker adaptations. In section 1.3 
we describe two strategies for training-
speakers selection. Section 1.4 shows results 
for several recognition experiments in large 
vocabulary task framework.  

1.2 – Adaptation process 
Because of the inter-speaker variability 
modeling, the  speaker-independent models 
have a relative large variance in comparison 
with the corresponding speaker-dependent 
models. By using the MLLR adaptation we 
only adapt the Gaussians means, so the 
resulting acoustic models still have a relative 
high variance and hence an high overlap 
among different speech units, resulting in 

reduced discriminatory capabilities. To reduce 
variances, one way is to use the MAP 
(Maximum A Posteriori) adaptation [6]. But 
this process requires a relative large amount of 
adaptation data to re-estimate all Gaussians 
variances. 

 

 
Figure 1: Adaptation process 

In this paper, we propose a strategy resulting 
inadapted acoustic models with reduced 
variances. The adaptation is performed in two 
steps (see Figure 1). The first adaptation step, 
that we term the a priori adaptation is based 
on selecting a cluster of training speakers who 
“are” acoustically close to the test speaker. 
Then the speaker-independent acoustic models 
are adapted by using the transcribed training 
data corresponding to those selected speakers. 
This first adaptation is done with the MAP 
procedure, which transforms the means, 
variances and gains of Gaussians : let g a 
Gaussian having µg  as mean and Σg

Σ
~

 as 
variance in the speaker-independent acoustic 

models. The new mean  and variance  of 
the Gaussian are given by: 

µg
~

g

µg
~
=
ηg + τgµg

cg + τg
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Σg =
1

cg + τg
+ [γg + τg[Σg + µgµg

tr ]]−µg
~
µg

~
tr  

where : 

cg = cg(t)
t
∑  

ηg = cg(t)xt

t
∑  

γg = cg(t)xtxt
tr

t
∑  

The parameter τg  is usually chosen to be 
constant.  is the a posteriori probability 
of the Gaussian g at time t conditioned on all 
acoustic observations 

cg(t)

xt =1...T . 

This first processing step adapts all Gaussians 
parameters, however, only variances and gains 
Gaussians adaptations can effectivelly improve 
the modeling capabililies of the system for a 
specific test speaker. In fact, really adapting 
the Gaussians means compared to a specific 
speaker, only relying on training speakers 
requires a very large population of speakers. 
The selected training speakers cluster is then 
accordingly closer to the test speaker. By using 
a not so large training speakers population 
(120 speakers), the spectral variation caused by 
the inter-speaker variability in each speech unit 
is reduced, but the Gaussians means remains 
unadapted to the test speaker. 

The second processing step consists in 
adapting the Gaussians means of the acoustic 
models resulting from the first adaptation step. 
This last adaptation is done by using the 
MLLR procedure [9]: the test data is decoded 
by using the reduced variances acoustic models 
(the a prior adapted models). Then the 
resulting frame/state alignement is used to 
estimate a global linear tranformation, which is 
applied to the Gaussians means of the a priori 
adapted acoustic models. We term this second 
step adaptation the a posteriori adaptation. 

1.3 – Speaker clustering 
To perform the a priori adaptation we need to 
find a subset of the training speakers who are 
the closest to the test speaker. This is done 
with the LIA speaker recognizer, AMIRAL 
[10], based on Gaussian Mixture Models 
(GMM). For this task we used a GMM with 
128 Gaussians for each training speaker. The 
system compares all the training speakers to 
the test speaker, and then order these speakers 

from nearest to farest. So, the transcribed 
training data of the n nearest speakers are 
selected to adapt the speaker-independent 
acoustic models with the MAP procedure. 

Another strategy to select the training speakers 
based on HMM instead of GMM was tested. 
Firstly, we constructed 120 training-speaker 
dependent HMMs. However, the data available 
from each training speaker are usually not 
sufficient to obtain robust estimations of the 
speaker dependent model parameters. So, we 
used MAP procedure [6] to adapt the speaker-
independent models to each training speaker, 
and hence obtain 120 HMMs representing each 
of the training speakers. It was then required to 
find the subset of the closest training speakers 
to the test speaker. The test data are decoded 
using a speaker-independent system leading to 
frame/state alignment. Then the acoustic 
likelihood of test data, conditioned on this 
alignment, is computed using each of training 
speaker-dependent HMM. The top speakers are 
then selected as the acoustically closest 
training speakers to the test speaker. 

The two strategies give always the same five 
first speakers. The experiments in this paper is 
performed using the GMM based strategy. 

1.4 – Experimental results 
In this section, we present the results of several 
recognition experiments. These experiments 
were conducted using SPEERAL [11], a large 
vocabulary speech recognition system, 
developped at the LIA. The lexicon size is 
about 20k words with 3.6% out-of-vocabulary 
words. This system uses a trigram language 
model. The baseline system is speaker and 
gender independent. The acoustic model 
contains 38 phonemes. Each phoneme is 3-
state left-to-right context-independent 
CDHMM (Continuous Density HMM). Each 
state is a mixture of 64 Gaussians. The signal 
speech is parameterized using 13 coefficients, 
12 mel-warped cepstral coefficients plus 
energy. The first and second order derivatives 
parameters are also used. 

To estimate the acoustic and linguistic models, 
we have used a training data extracted from 
Bref [13], with 120 speakers (66 females and 
54 males). The training data contain 66.5k 
sentences. The test data were provided for 
ARC B1 of AUPELF [12], with 20 speakers 
and 299 sentences. The sentences are articles 
published in the french newspaper “Le 
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Monde”. The a priori adaptation is performed 
by using the 5 closest training speakers to the 
test speaker. This adaptation is done with the 
MAP procedure. In the Table 1, we term this 
adaptation Adapt. 1. The a posteriori 
adaptation is performed by using the test signal 
with the MLLR procedure. In the Table 1, we 
term this adaptation Adapt 2. Both adaptations 
will be compared to the MLLR-only one, 
applied on the test data. We term this last 
adaptation Adapt. 3. For MLLR, we used 1 
global linear transformation with an offset. 

 

 Baseline Adapt. 1 Adapt. 2 Adapt. 3 

WER  26.2 25.4 22.4 24.9 

 

Table 1: Word Error Rate (%) Comparisons: 
Adapt. 1:a priori adaptation with MAP, Adapt. 
2: a posteriori adaptation with MLLR on 
models obtained in Adapt. 1, Adapt. 3: MLLR 
on the baseline acoustic models. 

 

We can see that the a priori adaptation using 
MAP (adapt. 1 in Table 1) doesn’t improve 
significantly the word error rate (only 3% 
relative gain with respect to the baseline 
system). However, this step is important 
because its conjunction with the MLLR 
procedure leads to a relative gain of 15% with 
respect to the baseline system (compare adapt. 
2 and adapt. 1). This fact is due to a smaller 
variance of acoustic models in a priori 
adaptation (MAP). Then the MLLR better 
maps the means of acoustic Gaussians model 
to match the test data. 

The word error rates (WER) by speaker shows 
that there is a relative large variation of 
recognition improvements with respect to test 
speakers. For example, the WER for one 
speaker was 41.1% without adaptation, 40.5% 
after the a priori adaptation and finally 27.9% 
after the a posteriori adaptation (1.5% relative 
gain by a priori adaptation compared to 32% 
by a priori and a posteriori adaptation). For 
the complete test, the average relative gain is 
about 15%. And, if some speakers were not 
improved, the recognition for these speakers is 
not degraded. This gain variation between test 
speakers can be explained by the fact that some 
test speakers miss signicantly close training 
speakers, with respect to the whole training 

speakers set. This problem should be solved by 
using a larger population of speakers. 

In our experiments, the relative gain obtained 
by using the MLLR (1 global transformation) 
with respect to the baseline system is about 5% 
(from 26.2% to 24.9%). This gain is 3 times 
smaller than the one obtaind by conjunction of 
the a priori and a posteriori adaptations. The 
relative gain obtained by the a priori and a 
posteriori adaptations with respect to the 
conventional MLLR is about 10%. 

2 – STRUCTURAL ADAPTATION USING 
MAP AND GAUSSIANS MERGING 
TECHNIQUE ADAPTATION 

In this section, the SMAPGM (Structural 
Adaptation using MAP and Gaussians Merging 
technique) will be presented. This technique 
uses a classification tree and a new adaptation 
method. 

2.1 – Introduction 
Due to complex inter-speaker variabilities, the 
performance of speaker-independent (SI) large 
vocabulary continuous speech recognition 
systems still lags behind that of 
speakerdependent (SD) systems. Speaker-
independent systems are typically constructed 
using speech samples collected from an as 
large as possible population of speakers [14]. 

Nevertheless, in the speaker-dependent case, 
the large amount of required training data for 
each test speaker reduces the utility and 
portability of such systems. 

The main difficulty in speaker adaptation 
techniques is to adapt a large number of 
parameters with only a relative small amount 
of data. The MAP adaptation approach allows 
accurate estimation of HMM parameters for 
which enough adaptation data is available [6], 
and the unseen parameters are still unchanged. 
In this manner, the MAP approach leads to too 
much local adaptation. Hence the MAP 
approach can't be effective with relative small 
amount of adaptation data especially in 
unsupervised mode. 

In order to reduce this problem, Shinoda and 
Lee proposed a structural maximum a 
posteriori (SMAP) approach [15], in which a 
hierarchical structure (tree) in the parameter 
space is assumed. The parameters 
transformation for each node in the tree are 
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estimated by using the MAP approach in 
which the a priori parameters are given by the 
parent node. The resulting transformation 
parameter, corresponding to each HMM 
parameter, is a combination of the 
transformation parameters at all higher levels. 
The weights in this combination depend on the 
amount of adaptation data at each node and on 
a fixed parameter. 

In SMAP, the parameters estimation at each 
node in the tree is based on the assumption that 
the mismatch between the training and 
adaptation data is a Gaussian PDF. 

The mean and the variance of this Gaussian 
mismatch PDF are estimated directly from the 
adaptation data by using the Maximum 
Likelihood criterion. In this manner, the 
estimation accuracy of the transformation 
parameters depends on the amount of the 
adaptation data. To avoid poor transformation 
parameters estimation accuracy due to an 
insufficiency of adaptation data we propose a 
new technique based on maximum a posteriori 
approach [6] and PDF Gaussian Merging. The 
basic idea behind this new technique is to 
estimate transformations which make the 
training acoustic models as close as possible to 
the test acoustic models rather than 
transformation maximizing the likelihood of 
the adaptation data. The test acoustic models 
are estimated using the MAP approach [6]. In 
this manner, even with very small amount of 
adaptation data, the parameters transformations 
are accurately estimated. 

In this paper, like in SMAP [15], we assume 
that the models parameters are organized in 
tree containing all the Gaussian distributions. 
Each node in that tree represents a cluster of 
Gaussians. All the Gaussian distributions of a 
given cluster/node share a simple common 
affine transformation (diagonal matrix plus 
offset) compensating the mismatch between 
training and test conditions. 

To estimate this affine transformation, we 
propose a new technique based on a Gaussian 
distributions merging and the standard MAP 
adaptation. This new technique is very fast and 
allows a good adaptation for both means and 
variances even with small amount of 
adaptation data in unsupervised mode. At each 
node, the transformation is obtained by 
combining three kinds of information: the 
adaptation data, the parameters transformation 

at the parent node and the parent node adapted 
parameters. 

Section 2.2 presents the whole adaptation 
process proposed in this work: the adaptation 
process in a given node in the tree, the 
combination of the mismatch information at 
different tree layers, the merging procedure, 
and the tree construction. Section 2.3 shows 
results for several recognition experiments in a 
large vocabulary task framework. 

2.2 – Adaptation process 
Gaussian distributions. The first step in the 
adaptation process is to build a classification 
tree structure representing the set of Gaussian 
distributions. Each node in the tree represents a 
subset of Gaussians and the root node 
represents the whole set. Let ν denote one node 
in the classification tree, and 
Gν = {gmν,mν =1...Mν} be the subset of 
Gaussian distributions associated to the node 
ν : gmν = N(µmν,Σmν) . In the following 
paragraphs, we describe the adaptation process 
for a node ν  and show the strategy for 
combining information at different layers. 

2.3 – Adaptation Process in a node 
The goal of this work is to estimate for each 
node ν  an affine transformation Tν  (diagonal 
matrix plus offset) shared by all Gaussian 
distributions in the subset Gν . This affine 
transformation is then applied to only the 
distributions belonging to Gν . Let 
X = {x1,...,xt} denote a given set of T  
observation vectors for parameters adaptation. 

Let be the Gaussian obtained 

by adapting the Gaussian  
using the standard MAP adaptation (see 
Formulas). 

gmν

~
= N(µmν

~
,Σmν

~
)

gmν = N(µmν,Σmν)

Let Gν
~

 be the subset of MAP adapted 
Gaussians in the node ν : 

. Let  

and  be the two Gaussians 
obtained by merging into one all Gaussians in 

Gν
~

ν,mν =1...Mν}

= N(µν,Σν )

= {gm
~

gν

g
~
ν = N(µν

~
,Σν

~
)

Gν  and Gν
~

 respectively (see section 2.2).The 
affine transformation Tν  is then estimated as 
the one which matches the Gaussian gν

mν = N(µmν,Σ

 to the 

Gaussian . Each Gaussian  
is then adapted as follows :  

gν
~

g mν)
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µ' mν = Σ
~
ν

1
2
Σν

−
1
2 (µmν − µν ) + µν

~
 

Σ' mν = Σ
~
νΣν

−1Σmν  

Where µ' mν  and Σ' mν  are the adapted 
parameters of µmν  and Σmν  respectively. This 
adaptation procedure can be performed 
iteratively. We have shown experimentally that 
the likelihood of adaptation data increases at 
each iteration. 

2.4 – Merging Process 
The merging process is based on the merging 
of pairs of Gaussian distributions until we 
obtain a single Gaussian. In this work the 
merging of two Gaussians uses the minimum 
loss likelihood criterion. Let G = {g1,...,gn} 
denote a set of Gaussians to be merged into 
one representing the set G. Firstly, we choose 
two Gaussians gi = N(µi,Σi) and 
gj = N(µj,Σj)  in G. Let  and  denote their 
associated counts. The Gaussian 

ci cj

g = N(µ,Σ) 
obtained by merging  and  is given by the 
classic formula: 

gi gj

µ = ciµi + cjµj

ci + cj
 

Σ =
ciΣi + cjΣj +

ci × cj

ci + cj
(µi −µj)(µi −µj)tr

ci + cj
 

The count c  associated with the new Gaussian 
 is the sum of the two counts  and  

associated with the two Gaussians g  and . 
The two Gaussians  and  in 

g ci

i

cj

gj

gi gj G are then 
replaced by the Gaussian . We repeat this 
merging procedure until we obtain one 
Gaussian representing the set 

g

G. The initial 
count cmν  associated to a Gaussian  is the 
sum over all observation vectors of the a 
posteriori probabilities: 

gmν

cm = Σtγmνt . 

2.5 – Adaptation Using Hierarchical Priors 
In section 2.1. we have treated the problem of 
estimating an affine transformation Tν  
associated to the node ν . The estimation of Tν  
was based only on the Gaussians belonging to 
this node and their associated observation 
vectors. To estimate the transformation Tν  by 
using all Gaussians in the CDHMM and their 
associated observation vectors we use the 
adaptation with hierarchical priors. 

Let p(ν)  denote the parent node of ν . Let  
and )  be the two Gaussians obtained by 
merging into one all the Gaussians in 

gν

gp(ν

Gν  and 
)  respectively (the original Gaussians in 

the node 

gp(ν

ν  and p(ν) ). In the manner, let  

and )  denote the Gaussians obtained by 

merging into one all the Gaussians in 

gν
~

gp(ν
~

Gν
~

 and 

) respectively (the MAP adapted 
Gaussians in the node 
Gp(

~
ν

ν  and p(ν) ) (see 
section 2.1). 

On one hand we merge the Gaussians gν  and 
gp(ν

g
)  to obtain one Gaussian 

ν
p(ν ) = N(µν

p(ν ),Σν
p(ν ))

g
~

ν

p(ν )

=

 and on the other hand 

we merge the Gaussians  and )  to obtain 

one Gaussian . In this 
merging process the count associated to the 
Gaussians in the parent node 

gν
~

(µ
~

ν

p

gp(ν
~

Σ
~
ν

p(ν )

)N
(ν )

,

p(ν)  is a fixed 
parameter, and the count associated to the 
Gaussians in the node ν  is the sum of the 
counts associated to all Gaussians in that node 
(Σmcmν = ΣmΣtγmνt ). The affine transformation 
Tν  is then estimated as the one which matches 

the Gaussian gν
p(ν )  to the Gaussian gν

p(ν )
~

. 
Each Gaussian gmν = N(µmν,Σmν)  is then 
adapted as follows : 

µ' mν = (Σν
p(ν ))1/ 2

~

(Σν
p(ν ))−1/ 2(µmν − µν

p(ν )) + µν
p(ν )
~

Σ' mν = (Σν
p(ν )
~

)(Σν
p(ν ))−1Σm  

 

 

Where µ' mν  and Σ' mν  are the adapted 
parameters of µmν  and Σmν  respectively. These 
adaptation formula are then used instead of 
equations 1 and 2. In this manner the resulting 
transformation parameter, corresponding to 
each parameter, is a combination of mismatch 
information at all levels. In this combination 
the weight for each level changes 
autonomously according to the amount of 
adaptation data. 

2.6 – Construction of the tree structure 
The use of the tree structure has been largely 
studied in the contextual acoustic units 
estimation framework [16]. 
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In this work we have used a binary tree. We 
assumed that all Gaussians in a state of the 
CDHMM belong to the same class and the tree 
leaves represent the CDHMM states. Each 
node in the tree is a collection of states which 
are collections of Gaussians. For classification, 
each state is represented by one Gaussian 
obtained by merging allGaussians in that state. 
Hence, we construct a state classification tree 
using the loss likelihood minimization criterion 
for clustering. We used the up to down strategy 
as classification tree algorithm. Our 
classification tree algorithm is not optimal 
because, at each node with n states, we don't 
explore the 2n-1

 two-cluster splits possible. 
Instead, we use an iterative procedure like k-
means clustering with two centers. 

2.7 – Experimental results 
In this section, we present the results of several 
speech recognition experiments. These 
experiments were conducted using the same 
experimental set than in the previous section, 
expect that now the baseline system is gender-
dependent with 3-states left-to-right context-
dependent unit acoustic models. 

In these experiments, we used two binary trees 
with six layers: one for the male acoustic 
models and the other for the female acoustic 
models. These classification trees are built 
once before the adaptation process. In the 
experiments, both mean vectors and 
covariances were adapted. All adaptation 
procedures were performed speaker per 
speaker in unsupervised mode. 

We will call the proposed technique SMAPGM 
(Structural Adaptation usingMAP and 
Gaussians Merging technique). 

In Table 1 we can see that the SMAPGM 
technique gives an average relative gain about 
16% with respect to the baseline system. It 
should be noted that part of the improvements 
of MLLR and SMAPGM can be cumulated. 

In fact, by performing SMAPGM after MLLR 
the relative cumulated gain is about 18% with 
respect to the baseline system and by 
performing MLLR after SMAPGM the relative 
cumulated gain is about 19.5%. In these 
experiments, we have noted that the effect of 
the proposed method is more significant for 
speakers with higher word error rates. 

 

 Male Female Average 

Base 21.2 21.0 21.1 

SMAPGM 18.0 17.7 17.8 

SMAPGM+MLLR 16.6 17.4 17.0 

MLLR+SMAPGM 17.1 17.5 17.3 

Table 1: Word Error Rate (%) for gender-
dependent speech recognizer with different 
speaker adaptation techniques. SMAPGM 
designates the proposed technique: structural 
adaptation using MAP and Gaussians Merging 
technique. 

We have performed the same experiments with 
a better lexicon and language model. The 
baseline word error rate becomes 19%. After 
SMAPGM adaptation, the word error rate was 
16.3% (a relative gain of 14% with respect to 
the baseline system, instead of 16% with the 
first system). When SMAPGM is performed 
after MLLR, the word error rate comes down 
to 15.9% (a relative gain of 16% with respect 
of baseline system, instead of 19.5% with the 
first system). The relative gain obtained by 
using SMAPGM seems to be larger for the 
baseline system with higher word error rate. In 
order to compare SMAPGM with SMAP [8], 
we realized experiments under the same 
conditions (with the same tree with six layers). 
The SMAP adaptation leads to a word error 
rate of 17.3% (a relative gain of 9%, instead of 
14% for SMAPGM adaptation, see Table 2). 
 Average Relative gain 

Baseline 19.0  

SMAPGM 16.3 14.2 

SMAP 17.3 8.9 

Table 2: Word Error Rate (%) and relative 
gain in regard of baseline system for gender-
dependent speech recognizer with SMAP and 
SMAPGM adaptations 

3 – CONCLUSION 

In this paper, we have presented two new 
method for speaker adaptation. Their 
effectiveness was confirmed by experiments in 
a large vocabulary speech recognition task: a 
relative gain of 15% with regard to the baseline 
system was obtained in the case of the first 
technique and a relative gain of 16% in the 
case of the second technique. 
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