
 1

AN EVALUATION OF THE FBDM FRAMEWORK DESIGN METHOD

N. Bouassida,
Assistant en Informatique de gestion

Nadia.Bouassida@isimsf.rnu.tn
H. Ben-Abdallah

Maître Assistant en Informatique
Hanene.benabdallah@fsegs.rnu.tn

A. Ben Hamadou
Professeur en Informatique

Abdemajid.Benhamadou@isimsf.rnu.tn

Adresse professionnelle
Laboratoire LARIM, ISIMS, Route Mharza km 1.5, 3018, Sfax, Tunisie

Résumé : Cet article présente des travaux pertinents à la réutilisation architecturale. D’une
part, il présente la méthode de conception de frameworks FBDM (Framework Based Design
Method). D’autre part, il évalue FBDM à travers une étude de cas dans le domaine des
éditeurs graphiques. La méthode FBDM offre un langage de conception, un processus de
conception et un outil CASE. Le langage de FBDM est un profile UML, qui étend UML avec
des annotations graphiques afin de distinguer entre le noyau du framework et les points de
variation. Le processus de conception de FBDM génère un framework d’une manière semi-
automatique en unifiant un ensemble d’applications dans le domaine du framework; le
développeur du framework doit décider de la complétude de quelques relations faisant partie
des points de variation. La méthode FBDM est évaluée à travers un framework d’éditeurs
graphiques. Elle compare le framework généré par FBDM avec le framework populaire
JHotDraw. De plus, l’évaluation utilise des métriques de conception pour examiner la qualité
du framework généré et l’apport de la notation de FBDM.

Summary : This paper presents work pertinent to architecture reuse. On one hand, it presents
the framework design method FBDM (Framework Based Design Method) which offers a
design language, a design process and a CASE toolset. On the other hand, it reports on an
experimental evaluation of FBDM in the domain of graphical drawing editors. The design
language of FBDM is a UML profile that extends UML with graphical annotations to
distinguish between a framework core and hot-spots. The FBDM design process generates
a framework semi-automatically by unifying a set of applications in the framework domain;
the developer is probed to decide on the completeness of some relations. The second part of
this paper uses a graphical drawing editor framework to evaluate FBDM. It compares the
framework generated by FBDM to the popular JHotDraw framework. In addition, it uses
design metrics to examine the quality of the generated framework and the usefulness of the
notation of FBDM.

Mots clés : Réutilisation, conception de frameworks, métriques de conception, FBDM.

Keywords : Reuse, framework design, design metrics, FBDM.

 2

An Evaluation of the FBDM Framework Design Method

1 – INTRODUCTION

As computerized systems became larger and
increasingly complex, the benefits of reuse became
irrefutable. In fact, the software engineering
community has been applying several object-
oriented based reuse techniques ranging from class
and component libraries (c.f., (Meyer, 1988)
(Szyperski, 1996)) to, more recently, generic
architectures (a.k.a. frameworks (Johnson, 1998))
and evolving models (c.f., MDA (OMG, 2001)).

The work presented in this paper is an academic
contribution to architectural reuse through
frameworks. An object-oriented framework offers
the skeleton of applications in a given domain, that
can be customized by an application developer
(Fayad, 1998). Hence, it allows the reuse of design
models, code and valuable domain expertise
(Johnson, 1998). Therefore, it ensures an increased
productivity, a shorter development time and a
higher quality of applications.

Overall, a framework is composed of immutable
parts, called frozen-spots or core, and adaptable
parts, called hot-spots. A frozen-spot describes the
typical software components and is, therefore,
present in any application generated from the
framework. On the other hand, a hot-spot allows the
framework extension to a particular application,
and helps in tracing the evolution of a given design.

One of the problems impeding the widespread use
of frameworks is the difficulty of their
development, combined with the lack of a standard
notation that helps to identify the hot-spots. This
problem motivated several design notations based
on UML (c.f., (Pree, 1994) (Fontoura et al., 2000))
and a few design processes (c.f., (Schmid, 1997)).
However, none of the proposed notations
distinguishes between the core of the framework
and the hot-spots and none of them relies on a
formal semantics. Moreover, none of the design
processes proposed in the literature gives rules that
guide the generation of the framework and that
determine its different components.

Clearly identifying (both finding and denoting) the
core and the hot-spots of a framework is essential in

understanding and reusing the framework. This
motivated our work in proposing a framework
design method, called FBDM (Framework Based
Design Method, that offers a design language,
called F-UML with a precise semantics (Bouassida
et al., 2003), a design process (Bouassida et al.,
2002) and a CASE tool, called F-UMLTool
(Bouassida et al., 2004). The F-UML language is a
UML profile that increases the expressiveness of
UML with framework specific concepts and that
guides a framework design reuse. It adds tags and
graphical annotations to UML diagrams; the
extensions help to distinguish visually between the
core of a framework and its hot-spots and guide the
user in deriving a specific application in the
framework domain. On the other hand, the FBDM
design process is a bottom-up process that
generates a framework design by applying a set of
unification rules to concrete application designs.
In addition, it generates a framework with a
minimum intervention from the developer; this
latter is probed only to decide on the completeness
of some structural relations (inheritance,
composition,…), a decision often requiring domain-
specific knowledge.

After an introduction to the FBDM method, this
paper presents an experimental evaluation of
FBDM in the domain of graphical drawing editors;
the choice of the domain was motivated by the
presence of a popular, mature and open source
framework in this domain (JHotDraw (Gamma,
2000)).

The FBDM evaluation was conducted in two
phases. First, an intrinsic evaluation tested the
completeness of the design unification rules and the
quality of the generated framework. Secondly, a
comparative evaluation tested the correctness of the
design process and evaluated the usefulness of the
F-UML notation.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 presents
the framework design method FBDM. Section 4
presents the three graphical drawing applications as
well as the framework generated through FBDM.
Section 5 presents the evaluation metrics used and
reports on the results of our two-phase evaluation.

 3

Section 6 concludes with a summary of the
presented work and outlines future works.

2. RELATED WORK
Classical design languages (e.g., UML) and
processes (e.g., OMT (Rumbaugh, 1991)) lack
concepts to determine and express the variability in
frameworks. This motivated several researchers to
propose design languages and processes
specifically for frameworks. We next review
framework design languages and processes that are
based on the de facto standard language UML.

2.1 – UML-based Framework Design Languages
Fontoura et al. (Fontoura et al., 2000) propose a
UML profile for frameworks, called UML-F, where
a design is expressed by a class diagram and a set
of sequence diagrams. This notation extends the
two UML diagrams by presentation tags (e.g.,
complete, incomplete), basic modeling tags (e.g.,
fixed, application, framework) and essential pattern
tags (e.g., FacM-Creator, FacM-ConcreteCreator).
The added tags are used to mark, essentially, the
complete/incomplete parts and the variable parts in
the diagrams and the roles of diagram elements. In
this notation, the extended class diagram represents
the framework classes and relations. However,
according to the tag definitions, this notation
represents only the whitebox hot-spots; the second
type of hot-spots, called blackbox (Schmid et al.,
1997), are therefore not expressible in this notation.
In addition, several tags are complementary and
thus are redundant (e.g., complete and incomplete,
application and framework). Furthermore, the
pattern tags combined with the presentation tags
could overcharge the class diagram and impede the
design understanding.

Sanada et al. (Sanada et al., 2002) present an UML
extension that “aims to be comprehensive and well
defined”. Most of their proposed extensions have
already been defined by Fontoura (Fontoura, 2000);
the essential difference is the constraint covariant
which shows that adding a subclass to a certain
class might result in adding a subclass to another
class in the class diagram.

Riehle (Riehle, 1998) proposes a role modeling
language that adapts the OORAM methodology
(Reenskaug, 1996). The proposed language
represents a framework through a class model with
an extension-point class set (places of extension), a
built-on class set (the framework interface) and a
free role type set (usages of the framework by other
frameworks). This language focuses more on
framework composition than framework adaptation.
For instance, it does not visually distinguish
between extension-point classes and frozen classes

in the framework. Therefore, one cannot easily
recognize the whitebox and blackbox hot-spots.

Overall, the proposed UML-based design languages
for frameworks lack the visual distinction between
the core and the two hot-spot types. This distinction
is essential in understanding and reusing a
framework. In addition, none of the proposed
languages relies on a formal semantics. This latter
is vital in analyzing a framework and validating its
reuses.

2.2 – Framework Design Processes
A design process for frameworks should
systematically help to identify and derive a
framework core, blackbox and whitebox hot-spots.
It could follow either a top-down or bottom-up
strategy. Bottom-up design works well where a
framework domain is already well understood, for
example, after some initial evolutionary cycles. In
this case, the design process starts from a set of
existing applications and generalizes them to derive
a framework design (c.f., (Koskimies, 1995),
(Fontoura, 2000)). On the other hand, top-down
design is preferred when the domain has not yet
been sufficiently explored. In this case, the design
process starts from a domain analysis and then
constructs the framework design (c.f., (Aksit,
1999)).

Koskimies and Mossenback (Koskimies et al.,
1995) propose a two-phase bottom-up framework
design process. The first phase, called problem
generalization, incrementally generalizes a
representative application in the framework domain
into “the most general” form. In the second phase,
called framework design, the generalization levels
of the previous phase are considered in a reverse
order, leading to an implementation for each level.
The last step in the second phase applies the
resulting framework to the initial application. This
design process does not provide for reuse
guidelines; that is, it does not clearly identify nor
does it guide the designer in finding the framework
core and hot-spots.

Schmid (Schmid et al., 1997) decomposes the
framework design process into three steps: 1)
design of a class model for an (arbitrary)
application in the framework domain; 2) analysis
and specification of the domain variability and
flexibility, i.e., identification of the hot-spots; and
3) generalization of the class model by applying a
sequence of transformations that incorporate the
domain variability. This design process leaves the
identification of hot-spots, during the second step,
to the developer’s expertise.

Fontoura et al. (Fontoura et al., 2000) propose a
design process that considers a set of applications

 4

as viewpoints (i.e., perspectives) of the domain.
The process informally defines a set of unification
rules that describe how the viewpoints can be
combined to derive a framework. This design
process neither distinguishes between the two hot-
spot types, nor does it specify the object
interactions. In addition, this process does not
address semantic issues in the unified applications
(e.g., synonyms, homonyms,…); it supposes that all
the semantic inconsistencies between the
viewpoints have been solved beforehand.

3. THE FRAMEWORK DESIGN METHOD
FBDM

A framework design consists in a framework
design notation and a framework design process
that guides the development of a framework. On
one hand, the framework design notation must
provide for a means to describe the framework
static structure (the classes and their relations), the
core, and the whitebox and blackbox hot-spots. In
addition, it has to show explicitly the collaborations
between objects instantiated from the framework
classes, and to clarify object responsibilities. On
the other hand, the framework design process has to
provide for design rules helping in the design of
frameworks and to provide for a methodical,
systematic way to design frameworks. In addition,
it must guide the user in determining the core and
hot-spots of the framework.

These reasons motivated us to propose the FBDM
design method with its design language F-UML and
process.

3.1 - The Framework Design Language F-UML

A framework design expressed in the F-UML
language is composed of four UML extended
diagrams:

• A use case diagram that specifies the
framework scope, objectives and domain
limits. Table 1 summarizes and explains the
F-UML extensions added to UML.

• A class diagram that describes the static
architecture of a framework. Table 2
presents the F-UML notation for the class
diagram.

• A pattern diagram that shows the design
patterns (Gamma et al., 1995) and meta-
patterns (Pree, 1994) in order to delimit the
roles of the framework classes.

• A set of sequence diagrams that describe
object interactions. The extensions to the

UML sequence diagram are described in
Table 3.

In F-UML, a blackbox hot-spot represents a
component that can be selected (without
modification) in an application derived from the
framework. On the other hand, a whitebox hot-
spot can be selected and modified to meet the
special requirements of an application derived from
the framework. For example, a whitebox hot-spot
class can be modified by specializing it (i.e., adding
an inheriting class) adding/removing an
attribute/operation, or redefining one of its
operations. Note that, since the use cases represent
the design at a high level of abstraction, they can
not include whitebox hot-spots.

Being a UML profile, the F-UML language could
be adopted easily by the UML community. In
addition, having a precise, formal semantics
(Bouassida et al., 2003) F-UML can be combined
with a formal method that allows the verification
and validation of framework designs. Currently, the
F-UML semantics is expressed in Object-Z (Smith,
2000) and verification is conducted with the Z/Eves
theorem prover (Bouassida et al., 2005).

Notation Explanation

a framework core

a framework blackbox hot-spot

a framework whitebox hot-spot

Method

a re-definable (virtual) method
in a whitebox hot-spot

Method (undefined)

a method with an undefined
signature

{extensible}

an adaptable class interface
(whitebox hot-spot)

{incomplete}

the framework may be adapted
by adding other related classes
(inheritance, composition,…)

Table 1. F-UML class diagram notation

 5

Notation Explanation

a framework core use case
(actor)

a framework hot-spot use case
(actor)

to show that it is possible to
add an inheriting actor (use
case) in an application adapting
the framework

Table 2. F-UML use case diagram notation

Notation Explanation

Class : Object

a framework core
object

Class : Object

a framework
whitebox hot-spot

Class : Object

a framework
blackbox hot-spot.

{optional}

Class : Object Class : Object

the message may
not exist in an
application reusing
the framework

Table 3. F-UML sequence diagram notation

3.2 - The FBDM design process
The FBDM design process is a bottom-up process
that takes several applications in a given domain
and applies a set of unification rules to derive a
framework in the F-UML notation. (Roberts
(Roberts 1996) states that three applications
sufficiently represent their domain). In addition, the
FBDM design process helps the framework
designer to structure the framework by determining
automatically its core and hot-spots.

Overall, the design process is based on architectural
and noun comparisons. Architectural comparisons

examine the structure of the applications defined
through the different relations (composition,
aggregation …). Since a framework offers a basic
architecture for the derived applications,
architectural comparison of the unified applications
is, therefore, a reasonable approach.

The second type of comparisons used in the FBDM
design process is noun comparisons. These latter
examine the nouns attributed to the different
entities (actors, use cases, classes, attributes,
methods …) and, thus, deal with the semantics
included in the applications through naming. These
comparisons rely on the hypothesis that nouns are
well chosen to reflect the roles of software entities.
More specifically, they use semantic relationships
(e.g., equivalence, generalization-specialization,
composition) between nouns of classes, attributes
and methods that appear in the applications to be
unified. In addition, the unification rules compare
the method signatures, which, combined with the
noun comparison, give an insight on the dynamic
behavior (or roles) of the classes.

In the remainder of this section, we note a class C
in an application Ai as CAi, a use case U in an
application Ai as UAi, and an actor A in an
application Ai as AAi.

3.2.1 Unification of the use case diagrams
To design the framework use case diagram, the
unification process first extracts use cases (actors)
common to all of the applications and puts them as
the framework core. Secondly, it extracts the
different use cases (actors) and puts them as
blackbox hot-spots. For this, it uses the following
four semantic relations:

• N_equiv(AA1,...,AAn) means that the actor
names are either identical or synonym.

• N_var(AA1,...,AAn) means that the actor
names are a variation of a concept, e.g.,
employee-contractual, employee-permanent,
employee-vacationer.

• Gen_Spec(AA1;AA2,...,AAn) means that the
name of the actor AA1 is a generalization of
the names of AA2 ,…, AAn, e.g., PersonA1-
EmployeeA2.

• N_dist(AA1,...,AAn) means that the name of
the actor AA1 has neither an equivalent nor a
variation, nor a generalization in the other
applications.

The design of the framework use case diagram
through unification is guided by the six
rules depicted in Figure 1.

{incomplete}

 6

3.2.2 - Unification of the class diagrams

To design the framework class diagram, the
unification process determines the semantic
correspondence between the classes, using the
following criteria:

• class name comparison criteria to compare
semantically the names;

• attribute comparison criteria to compare the
names and types of the attributes; and

• operation comparison criteria to compare the
names and signatures of the operations.

Note that, when comparing the set of attributes and
methods of two classes, the unification rules take
into account the interpretation of the inheritance
relation. Thus, they consider the set of attributes
(operations) of a class as those contained in the
given class augmented with the set of attributes
(operations) of the super classes from which it
inherits.

Class name comparison criteria: They express the
linguistic relationship among class names that
belong to different applications. We defined five
types of relations between classes:

• N_equiv(CA1,...,CAn), N_var(CA1,...,CAn),
Gen_Spec(CA1;CA2,...,CAn), and
N_dist(CA1,..., CAn) are defined in a similar
manner to their counter parts for the use case
diagram; and

• N_comp(CA1;CA2,...,CAn) which means that
the class name CA1 is linguistically a
composite of the components CA2,…,CAn,
e.g., HouseA1-RoomA2.

Attribute comparison criteria: They express the
relationship between the attribute names and the
attribute types of application classes. They are
grouped into four categories:

• Att_equiv(CA1,..., CAn) implies that the
classes have identical or synonym attribute
names with the same types.

• Att_int(CA1,..., CAn) implies that CA1,..., CAn
have attributes in intersection.

• Att_dist(CA1,..., CAn) implies that no attribute
of CA1,..., CAn is common with the attributes
of the others.

• Att_conf(CA1,..., CAn) implies that there
exists at least one attribute of CA1 with a
name equivalent to the attributes of CA2,...,
CAn but their types are different.

Operation comparison criteria: Operation
comparison consists in comparing the operation
names and signatures (returned types and parameter
types). The operation comparison criteria
Op_equiv(CA1,...,CAn), Op_int(CA1,...,CAn),
Op_dist(CA1,...,CAn), and Op_conf(CA1,...,CAn) are
defined in a similar manner to the attribute
comparison criteria.

The class diagram unification process is depicted in
Figure 2. (For a detailed description of the
unification rules, the reader is referred to
(Bouassida et al., 2002). As illustrated in Figure 2,
the unification rules determine automatically the
framework core and hot-spots. The designer is
probed only to decide on the completeness of some
relations (Rule 3.d and 7). This information is, in
fact, application dependant and requires domain
knowledge.

In addition, in Figure 2, Rule 5 deals with the
generalization-specialization relation in a manner
similar to N-Comp relation of Rule 4. Furthermore,
Rule 3.b may add new inheriting classes to the
framework. The addition depends on the
significance of the number of attributes and
methods in an inheriting class C with respect to
another class C’. This is defined using the ratio Rsig:

f C methods o number of of Cattributesnumber of
and C'long to C ds that be and methoattributesnumber of (C, C') Rsig

+
=

Informally, a class C has a significant number of
attributes and methods with respect to a class C’, if
Rsig is greater than a fixed threshold (e.g., 50%) that
can be fixed by the framework designer. This ratio
fixes the level of details the framework designer
would like to include in the framework.

Further, Rule 6 adds or ignores hot-spot classes
according to the domain coverage ratio Rdc :

nsapplicationumber of
,.., An Aalents) in its equiviations orits s of C(or occurrencenumber of

 (C) Rdc
1var

=

Informally, this ratio is used to determine the reuse
potential of a class. If a class is present in several
applications, then it covers an important space of
the framework domain; thus, it must be present in
the framework hot-spot. On the other hand, if a
class is present in few applications, it is too
application specific; thus, if it is added to the
framework, it may complicate unnecessarily the
framework comprehension.

 7

The generic actor and inheriting
actors are added to the

framework with generalization
relation between them*

Rule 1:

Take an actor AA1 (use case U A1)

Name
comparison

N-dist(AA1,…AAn)

Repeat until all the actors
(use cases) of A1 are taken

N-equiv(AA1,…AAn)

Add the actor (use case) to
the framework core

The actors (use cases) are added to
the framework as inheriting to a new

generic core actor (use case)*

N-Var(AA1,…AAn) Gen-Spec(AAi;…AAn)

Rule 2: Rule 3:

Rule 4:

*if the designer decides that the inheriting actors (use
cases) do not represent all the domain, then the
inheritance relation is tagged with {incomplete}
**if the designer decides that the extensions or
inclusions of a use case do not represent all the domain,
then the extends or includes relation is tagged with
{incomplete} or if he decides that an actor can have
other associations with use cases, then the association is
tagged with {incomplete}

Yes

No

Transfer all the relations between actors (use
cases) added through Rules 1-5. If the relation
involves a core actor (use case), then *, **

Rule 5:
All the actors (use cases) remaining in the
applications A2,.., An are added to the framework
as hot-spots if Rdc(AAi) 2̆/3; or AAi would be two
levels away from a core actor(use case)

Rule 6:

Add the actor (use case)
to the framework as a hot-
spot, if Rdc(AA1)̆ 2/3; or
AA1 would be two levels
away from a core actor

More
Actors(use cases)

Figure 1: Design of the use case diagram

3.2.3 - Unification of the sequence diagrams
The framework sequence diagrams are obtained by
the unification of the sequence diagrams which
represents semantically equivalent scenarios.
Briefly, the unification process takes the “union” of
all the sequence diagrams of the given applications
and marks any message as {optional} if it does not
appear in all the applications. Any sequence
diagram that does not have equivalent diagrams in
the other applications being unified is transferred to
the framework with all its messages marked
{optional}.

For more details on the six unification rules of the
sequence diagrams, the reader is referred to
(Bouassida et al., 2002).

Finally, we note that the FBDM design process can
be optimized in two ways. First, the unification can
start with the application having the minimum

number of elements (i.e., use cases/actors, classes,
and messages). Secondly, in the unification rules of
the class diagrams, the comparisons can be limited
to “significant” attributes and operations, i.e., those
that are not omni present in the classes; for
example, the creator and destructor operations in a
class.

4 - THE GRAPHICAL DRAWING EDITOR
CASE STUDY

Two motivations were behind our choice of the
graphical drawing editor domain. First, an open-
source and mature framework already exists
(JhotDraw (Gamma et al., 2000)) and, secondly,
several derived applications also exist. The
availability of the framework and its applications
allowed us to conduct both an intrinsic and a
comparative evaluation of FBDM.

 8

1 The designer must decide on the completeness of the relation. If he decides that the component
(inheriting) classes do not represent the entire domain, then the composition (inheritance) relation is
tagged with {incomplete}.
2 New classes inheriting from the added class could be added according to the following rule: for each
application, if its class has a “significant” number of attributes and methods (with respect to the already
added class), then an inheriting class is added to the framework with the additional attributes and
methods.
3 If Op-Conf (CA1,…CAn) , thus the method in conflict has a corresponding method in the framework
core class with the same name, and an undefined signature, it is a virtual method. If Att-Conf
(CA1,…CAn) , thus the attribute in conflict has a corresponding attribute in the class of the framework
core that has the same name and the more general attribute type.
4 The domain coverage ratio Rdc(C)=number of occurences of C(or its variations or its equivalents) in
A1,.., An / n

Op-equiv
 ⊕ Op-int
 ⊕ Op-dist

Take a class CA1

N-dist(CA1,…CAn)

N-equiv.(CA1,…CAn)

Att-dist

Att-equiv

Op-equiv

Att-int

Op-int
⊕ Op-dist

Op-equiv
 ⊕ Op-int
 ⊕ Op-dist

N-Var(CA1,…CAn)

N-Comp(CAi,…CAn)

 Att-equiv

Att-int

Op-int
⊕ Op-dist

Operation
comparison

Att-dist

 Op-equiv

 Att-equiv

Att-dist

Op-equiv

Op-int ⊕
 Op-dist]

Name
comparison

Attribute
comparison

Att-int

Attribute
comparison

Attribute
comparison

Operation
compariso

Op-equiv
 ⊕ Op-int
 ⊕ Op-dist

Operation
comparison

Operation
comparison

Operation
comparison

Operation
comparison

Add CA1 to the
framework as a hot-
spot with an
undetermined type
if Rdc(CA1)˘2/3; or
CA1 would be two
levels away from a
core class4

Add CA1 to
the
framework
as a core
class

Add a core class containing the
attributes and methods in
intersection to the framework
tagged {extensible}. The added
class hierarchy is whitebox
since the class interface may
change 2 & 3

The classes CA1,..CAn are added to
the framework as inheriting
classes to a new abstract core
class containing the attributes and
methods in intersection tagged
{extensible}. The added class
hierarchy is whitebox since the
class interface may change 1

The composite class and the
component classes are added to
the framework with a
composition relation. The
attributes and methods in
intersection are put in the
composite class which is
marked as core 1

Rule2.a Rule2.b Rule 2.c Rule2.d Rule3.a Rule3.c Rule3.d Rule 4.a Rule4.d Rule 4.c Rule1 Rule3.b Rule 4.b

Rule 6: Each class C remaining in A2,..,
An is added to the framework as an
undetermined hot-spot if the domain
coverage ratio Rdc(C)˘2/3; or C would be
two levels away from a core class4

Rule 7: Transfer all the relations between
classes to the framework. If the relation
involves a core class, then 1

Gen-Spec(CAi,…CAn)

Rule 5

Rule 8: Visit all hot-spot classes C with an
undetermined type. If C contains virtual or
undefined methods or if one of its
inheriting classes is whitebox, then mark
C as a whitebox, otherwise mark C as a
blackbox. If C has a relation with a core
class, then 1

Yes

No

More
classes

Figure 2: Class diagram design

 9

Recall that the FBDM design process starts from
existing applications. For this, we have chosen the
following three applications (due to the availability
of their source code): JARP, a graphical composer
for petri nets (JARP, 2001); JOONE, a Java
framework to create, train and run neural networks
(JOONE, 2001); and RENEW, an editor for
drawing reference nets (RENEW, 2001).

Before starting our evaluation, we have re-
engineered the Java source code of the three
graphical drawing editor applications with a help
from the Rational Rose tool (Rational, 2004). In
addition, we manually specified their use case
diagrams and sequence diagrams by examining
their documentation. Due to space limitations, we
next give a quantitative description of the three
applications and focus on describing the framework
generated through FBDM.

4.1 – The Unified Applications

JOONE has a use case diagram composed of one
actor and 14 use cases related by 2 “extends”
relations, 5 “includes” relations and 6 associations.
Its class diagram is composed of 242 classes
interrelated by 132 inheritance relation, 35
associations and 48 aggregation. It has 15 sequence
diagrams.

On the other hand, the JARP application has a use
case diagram composed of one actor and 13 use
cases related by 5 “extends” relations, 3 “includes”
relations and 5 associations. Its class diagram is
composed of 175 classes related by 123 inheritance
relations, 33 associations and 24 aggregations. It
has 12 sequence diagrams.

As for the application RENEW, it has a use case
diagram composed of one actor and 21 use cases
related by 3 “extends” relations, 11 “includes”
relations and 5 associations. Its class diagram is
composed of 328 classes related by 243 inheritance
relations, 191 associations and 17 aggregations.

4.2 – The Generated Framework

Figure 3 shows the use case diagram of the
framework generated by unifying the three
applications in F-UMLTool. Similar to the unified
applications, it has one core actor. In addition, it
has 27 use cases marked as blackbox hot-spots

(e.g., “create a neural network Figure” and “create
a petri Net Figure”); these use cases were not
present in all of the unified applications and, thus,
represent particular application-specific
functionalities. Their presence in the use case
diagram gives the designer an idea on possible
adaptations of the framework and guides him/her in
the reuse. Furthermore, the generated use case
diagram contains seven use cases marked as core
(e.g., “create figure”); these latter represent the
basic functionalities of any graphical drawing editor
application, which also the case of the three unified
applications.
Figure 4 partially shows the generated class
diagram of the framework. The complete class
diagram contains 220 classes, among which 38 are
core, 4 are both core and whitebox, 76 are blackbox
and 102 are whitebox classes.

Examining closely the generated class diagram, we
found that among the classes present in the three
applications, we have the classes Figure,
AbstractFigure, AttributeFigure and
CompositeFigure; thus, these classes are part of the
framework core. In addition, among these classes,
the classes AbstractFigure, AttributeFigure and
CompositeFigure contain virtual methods; that is,
they could be refined either via inheritance or by
overriding some of their methods. For this, they are
marked as both whitebox and core classes.

During the generation of the framework class
diagram, F-UML Tool decided automatically on the
type of the hot-spot classes (e.g., AttributeFigure,
PolylineFigure are whitebox, PetriPlace and
PetriTransition are blackbox). It prompted us to
decide on the completeness of 16 inheritance and
composition relations. Among these relations, we
cite the inheritance relation between
AttributeFigure and RectangleFigure,
EllipseFigure, TextFigure; since the inheriting
classes do not represent the entire domain, we have
decided to tag this relation {incomplete}.

Figure 5 presents an example of the generated
sequence diagrams, for the “Create a figure” use
case. Some objects (e.g., PetriPlaceImpl and
LayerFigure) are blackbox in conformance with the
class diagram. The message LayerFigure is tagged
optional since it appears only in one application
among the three unified ones.

import export type

Create a place

Analyze transition invariants

Create a connection

extend
extend

include

user

Create a transition

Simulate

include

include

Jpeg format

include

Snet format

include

Change the weight
of an arc

Add nodes in an
arc

extend

extend

Create a figure

XML format

include

As shadow nets

include

XML format

include

As shadow nets

include

Create a virtual
place

include

Create a neural
network Figure

Create a Layer

Create a synapse

include

include

Test an arc

extend

clear arc

extend

Test the correctness of a Neural Network

Create a connection
between synapses

Train the Neural Network

Create an arc

Create a petri net
Figure

Edit Figure

Modify Figure

Editing the petri net

Modify the neural net

Modify the petri net

Editing the neural net

Figure 3: Use case diagram of the generated graphical drawing editor framework

Figure 4: Class Diagram of the generated Graphical Drawing Editor Framework (partial view)
10

 11

: CompositeFigure : AbstractFigure : Figure : AttributeFigure : TextFigure

Draw()

Add()
DrawFrame()

DrawBackground)

SetText()

: PetriPlaceImpl

Draw()

: LayerFigure

LayerFigure()

{optional}
Figure 5: Generated Sequence diagram for “Create Figure”

5 - EVALUATION OF THE FBDM METHOD

The evaluation of FBDM is divided into two
phases. In the first phase, the quality of the
generated framework is examined with respect to
the quality of the original applications; the quality
is evaluated using several object-oriented design
metrics. In the second phase, the generated
framework is compared with the existing
framework (JHotDraw) to examine its
completeness, consistency and non-redundancy.
This comparative evaluation allows us, in addition,
to evaluate the usefulness of the F-UML notation.

5.1 - Evaluation Metrics
Many researchers have been interested in software
metrics (c.f., (Kim,2002), (Shepperd, 1993)) and
particularly in object-oriented specific metrics (c.f.,
(Chidamber, 1994), (Lorenz, 1994), (Xenos,
2000)). Xenos (2000) presents a state of the art of
object-oriented metrics and classifies them
essentially into three categories: class, method and
inheritance metrics.

Kim (2002) adapted these object-oriented metrics
for UML diagrams. In our evaluation, we have
selected a set of most pertinent metrics for
frameworks from the works of Xenos (2000) and
Kim (2002). To these metrics, we added a set of
framework specific metrics.

As illustrated in Table 4, the selected metrics for
each diagram can be divided into two categories,
depending on their usage. The first category of
metrics can be used to measure the quality of a
diagram in terms of its structure. The second
category of metrics (marked with R) helps to
identify the reuse degree of a diagram, e.g., the
number of classes in the core, the number of
methods that must be redefined when reusing a
whitebox class, etc. We note that the metrics listed
in Table 4 can be used to calculate other metrics,
e.g., the number of hot-spot use cases (NHU) and
the number of hot-spot actors (NHA) can be can be
derived by subtracting NCU from NUM and NCA
from NAM, respectively.

5.2 – An Intrinsic Evaluation
In this intrinsic evaluation of the generated
framework, we aimed at testing the efficiency of
the FBDM process. More precisely, we wanted to
answer the following question: staring from
“good” quality applications, does the FBDM
process generate an “as good” quality framework?
For this, we used the set of quality metrics to
examine the generated framework.

Table 5 summarizes the values of the metrics used
to answer this question. Overall, as for the class
diagrams of the applications, similar results were
confirmed for the quality of the generated
framework class diagram since it is the largest, we
next examine it more closely.

Number of classes
The generated class diagram has a fewer classes
than the largest application (RENEW). The
excluded classes are due to Rule 6, which uses the
heuristic Rdc to decide whether a class covers the
domain enough to be added to the generated
framework. Recall that Rdc determines the
importance of a class in the domain as a function of
the number of appearances of the class in the
unified applications. In other words, this heuristic
lets us eliminate the classes that are too application
specific. For instance, the class PetriEditor which
belongs to the JARP application was omitted in the
generated framework, since both Rdc(PetriEditor) <
2/3 and this class is far from a core class by more
than two inheritance levels.

Number of relations
In addition, the number of relations (association,
aggregation and inheritance) slightly increased in
the generated class diagram due to Rule 7 which
automatically transfers all relations between classes
added to the framework class diagram. For
instance, according to the FBDM process, the DIT
of the generated framework will be at most one plus
the maximum of the DITs of the original
applications. The additional depth level results
from Rule 3.d and justifies the value of NIM for
the generated framework. For example, consider
the DIT of the class AbstractFigure: in the JOONE

 12

application, it is equal to 4, in the JARP and
RENEW applications it is equal to 3, while it is
equal to 4 in the generated framework.

Similar results were confirmed for the quality of the
generated use case diagram and sequence diagrams.

Metric Definition
NCM Number of classes in a model (Kim, 2002)
NCC Number of core classesR

NBBC Number of blackbox hot-spot classesR
NWBC Number of whitebox hot-spot classesR
NWBCC Number of whitebox core classesR
NAsM Number of associations in a model (Kim, 2002)
NAgM Number of aggregations in a model (Kim, 2002)
NIM Number of inheritance relations in a model (Kim, 2002)

Class metrics
NAtC Number of attributes in a class (Kim, 2002)
NOpC Number of operations in a class (Kim, 2002)
NROC Number of re-definable operations in a classR

Inheritance metrics
DIT Number of ancestors of a class (Chidamber,1994)

C
la

ss
 d

ia
gr

am

NOC Number of children of a class (Chidamber,1994)
NAM Number of actors in a Model (Kim, 2002)
NCA Number of core actorsR
NUM Number of use cases in a Model

U
se

 c
as

e
di

ag
ra

m

m
et

ri
cs

NCU Number of core use casesR

NOM Number of objects in a Model (Kim, 2002)
NMM Number of messages in a Model

Se
qu

en
ce

di

ag
ra

m

NOpM Number of optional messages in a ModelR

Table 4. Evaluation metrics used (R: reuse metric)

Metric Generated
Framework

JOONE JARP RENEW

NCM 220 242 175 328
NAsM 93 35 33 191
NAgM 8 48 24 17
NIM 231 132 123 243 Metric Result
NAtC 0… 10 0…43 0 … 16 0 … 10 NCC 38
NOpC 1 … 58 1 … 80 1 … 31 1 … 103 NBBC 76
DIT 0 … 17 0 … 8 0 … 15 0 … 17 NWBC 102
NOC 0 … 3 0 … 5 0 … 3 0 … 3 NWBCC 4
NAM 1 1 1 1 NROC 0…7
NUM 34 14 13 21 NCA 1
NOM

(“CreateFigure”)
7 7 4 6 NCU 7

NMM
(“CreateFigure”)

8 6 4 5 NOpM(“CreateFigure”) 2

 Table 5. Values of quality metrics Table 6. Values of reuse metrics

Overall, as for the class quality, the case study
illustrates that the generated classes maintain the
quality metric values below the largest values of the
unified classes.

While there are no fixed thresholds for the above
metrics, it is clear that their values reflect the ease
of understanding a design and the benefits of
reusing it. For example, classes with a large

 13

number of attributes (NAtC) and methods (NOpC)
would be of a higher complexity (Chidamber,1994).
Another example is the DIT of a class, which
measures the number of ancestor classes. The
deeper a class is within the hierarchy, the greater
the number of methods it inherits and, thus, the
more complex the class is. However, while deeper
trees yield a greater design complexity, they offer
better reuse levels through the multiple inherited
methods.

A third example is the metric NOC, which both
measures the number of a class children of and
indicates its possible reuses: A large number of
children implies a greater reuse potential. However,
this measure alone may not convey a precise reuse
measure. For instance, consider the NOC of the
class AbstractFigure; it is equal to 3 both in
JHotDraw and the generated framework, which
indicates that AbstractFigure offers a medium
potential of reuse. However, in the generated
framework, AbstractFigure is the root of an
incomplete hierarchy (see Figure 4), which
indicates that the generated framework can be
adapted to a particular application by adding other
inheriting classes. Thus, with the F-UML notation,
the number of incomplete relations stemming from
a class can be combined with NOC for a better
indication of the reuse measure.

5.3 – A Comparative Evaluation
In this evaluation, we aimed at testing the
completeness and correctness of the generated
framework, and the usefulness of the F-UML
notation.

Consistency and completeness of the use case
diagram
Comparing the use case diagram of the generated
framework (Figure 3) with the manually designed
use case diagram of JHotDraw, we noted that:

• The same main actor (user) is present in
both frameworks.

• The 27 use cases representing application-
specific functions (e.g., create a neural net
figure, create an arc) are generated as hot-
spots that illustrate possible adaptations of
the framework.

• The set of use cases in the generated
framework contains most of those of
JHotDraw. More specifically, NUM is 9 in
JHotDraw and it is 34 in the generated
framework from which 27 are hot-spot use
cases (i.e., shown only to give an idea on
possible reuses) and 7 are core use cases
(see Table 6). Thus, comparing JHotDraw
with the generated framework, only two use
cases ("create animation" and "use

construction tools for figure") were not
detected by the design process. Since they
were not used by any of the three
applications, these use cases do not
represent essential functions of JHotDraw.
In addition, relying on the F-UML notation,
the missing use cases can be easily added as
hot-spots.

Overall, this case study confirmed the
completeness and correctness of the unification
rules for the use case diagrams, since the
JHotDraw use case diagram is contained in the
generated use case diagram, modulo the hot-
spots.

Consistency and completeness of the class
diagram

Comparing the class diagram of the generated
framework (Figure 4) with the class diagram of
JHotDraw, we noted that:

• All of the abstract classes which define the
generic structure and behavior of any
application in the framework domain (e.g.,
Figure, AbstractFigure, CompositeFigure,
FigureChangeListener, Drawing) are
completely and correctly derived by the
FBDM design process.

• The concrete classes that could be reused in
specific applications (e.g., EllipseFigure,
RectangleFigure) are generated as hot-spot
classes.

• The NCM of JHotdraw is 216 while it is 220
in the generated class diagram. Looking
closely at both diagrams, we found out that:

− The additional classes are marked as hot-
spots in the generated framework. This
may lead us to conclude that the design
process produces a framework with
(possibly too many) application specific
increments, e.g., PetriArc, PetriPlace, etc.
These latter could be considered as details
that may complicate the comprehension
of a framework and hence impede its
reuse. However, the F-UML notation
helps by visually distinguishing these
details from the core. Thus, when reusing
a framework, the designer can first focus
on the core, and later he/she can choose
to understand or ignore the hot-spots.

− Some classes in JHotDraw were not
derived in the generated framework
because they were absent in the original
applications (e.g., ImageFigure in
JHotDraw). However, the FBDM design
process puts the tag {incomplete}
wherever the designer can add the

 14

missing classes. For instance,
RoundRectangleFigure can be added as
an inheriting class of AttributeFigure in
the generated framework; this possibility
is marked by the tag {incomplete} on the
generalization out of AttributeFigure (see
Figure 4). These missing classes may
reduce the number of reused classes (as a
reuse metric); however, thanks to the F-
UML notation, the designer is advised of
the places he is expected to focus his
design effort.

− The large number of classes in the derived
framework is justifiable since the original
applications have an average NCM of 248
classes. In addition, a large number of the
framework classes is a blackbox hot-spot
(NBBC=76); that is, they give an idea
about possible framework adaptations
thus, one would only select some of these
classes without having to modify them.

− The relations (generalization, association
and aggregation) derived in the
framework are consistent with their
counter parts in JHotDraw. The
generated framework contains additional
relations taken with the application-
specific classes.

Similar results were noted when comparing the
sequence diagrams of the generated framework
with the sequence diagrams of JHotDraw. The
generated sequence diagram includes the
corresponding sequence diagram in JHotDraw. In
addition, it complements it with an optional
message (LayerFigure()) relating the core object
Figure and the hot-spot object LayerFigure.

Overall, the generated framework is consistent with
and contains more details than JHotDraw; In
addition, the degree of details produced in the
generated framework depends on the level of
domain coverage of the unified applications. F-
UML helps identifying the details, which is
essential both to measure the degree of reuse and to
guide a reuse. However, it lacks concepts to
express a conditional instantiation of two
alternative hot-spots. For example, there is no
indication in the class diagram of the framework of
Figure 4 that the class NeuralNetDrawing cannot be
taken with PetriNetImpl. This leads us to consider
the use of OCL to express such constraints in future
work. Finally, the F-UMLTool was vital in the
design process, especially in managing the
complexity of applying the rules on the large class
diagrams.

Finally, we note that in addition to the JHotDraw
experiment reported in this paper, we have

evaluated the FBDM method in the case of a
framework for e-commerce brokers (Bouassida et
al., 2002). This latter case study contains all three
diagrams. The framework was generated from three
independent e-broker applications. Overall, the e-
commerce broker experiment confirms the above
reported results for the graphical editor domain.
Unlike the JHotDraw case study, we do not have
access to an e-broker framework to compare the
generality and degree of reuse of the derived
framework.

6 - CONCLUSION

This paper first presented the FBDM design method
for frameworks. It then presented an experimental
(intrinsic and comparative) evaluation of FBDM in
the domain of graphical drawing editors.

On one hand, the case study showed that the F-
UML notation facilitates the distinction between the
core of the framework, which must be present in
any application derived from it, and its variable
parts. This, in turn, can guide the designer in
estimating the degree of reuse the framework can
offer. In addition, the case study highlighted the
fact that the F-UML notation might need to be
augmented with the Object Constraint Language
(OCL) to express certain reuse constraints on the
hot-spots.

On the other hand, the case study showed that the
design process generates a framework that contains
the whole framework core, certain hot-spots present
in JHotDraw, and other application-specific hot-
spots.

We are currently working on three research axes.
The first examines how to add the generation of the
pattern diagram to the F-UMLTool. The second
consists of automating the collection of the
semantic comparison criteria in the dictionary used
by the F-UMLTool during the design process.
Finally, our third research axis examines how F-
UML can be integrated in the OMG Model Driven
Architecture (OMG, 2001); in particular, we are
examining how to define the PIM-PIM and the
PIM-PDM transformations in terms of hot-spots.
The integration of F-UML in MDA provides MDA
with a reuse validation capability through the
formal semantics of F-UML (Bouassida et al.,
2003) (Bouassida et al., 2005).

BIBLIOGRAPHY

Aksit, M., Tekinerdogan, B., Marcelloni, F.,
Bergmans, L. (1999), “Deriving Object-
Oriented Frameworks from Domain
Knowledge”, in Building Application
Frameworks: Object-Oriented

 15

Foundations of Framework Design, M.
Fayad, D. Schmidt, R. Johnson (Eds.),
John Wiley & Sons Inc., pp169-198.

Bouassida, N., Ben-Abdallah, H., Gargouri,
F., Ben-Hamadou, A. (2004), “F-
UMLTool for the formal design of
frameworks”, XXIIème Congrés
INFORSID, Biarritz-France 25-28 Mai.

Bouassida, N., Ben-Abdallah, H., Gargouri, F.,
Ben-Hamadou, A. (2002), “A stepwise
Framework Design Process”, IEEE
International Conference on Systems
Man and Cybernetics, Hammamet,
Tunisia, 07-09 October.

Bouassida N., Ayadi, T., Ben-Abdallah, H.,
Gargouri, F. (2002), “Design of a
framework for electronic commerce
brokers”, IEEE International Conference
on Cognitive Informatics, Calgary,
Canada, 27-29 August .

Bouassida, N., Ben-Abdallah H., Gargouri F.,
Ben Hamadou A. (2003), “Formalizing
the framework design language F-
UML”, International conference on
Software Engineering and Formal
methods (SEFM’03), Brisbane-Australia.

Bouassida, N., Ben-Abdallah, H., Gargouri, F.,
Ben-Hamadou, A. (2005), “Towards a
rigorous architectural reuse”, Arab
International conference on computers
Software and Applications, Egypt.

Chidamber, S. R., Kemerer, C. F. (1994), “A
metrics suite for object-oriented design”,
IEEE Transactions on Software
Engineering, Vol 20, N° 6, pp 476-493.

Erni, K., Lewrentz, C. (1996), “Applying
design metrics to object-oriented
frameworks”, Proceedings of the 3rd
International Software Metrics
Symposium (Metrics’96).

Fayad, M., Schmidt, D., Johnson, R. (1998),
Building Application Frameworks,
Wiley.

Fontoura, M.F., Pree W., Rumpe B. (2000),
“UML-F: A Modeling Language for
Object-Oriented Frameworks”,

European Conference on Object
Oriented Programming, Springer-
Verlag.

Fontoura, M. F., Crespo S., Lucena C.J.,
Alencar P., Cowan D. (2000), “Using
viewpoints to derive Object-Oriented
Frameworks: A case study in the web
education domain”, The Journal of
Systems and Software (JSS), vol 54, n°3
Elsevier Science.

Gamma, E., R., Helm, R. Johnson, Vlissides, J.
(1995), Design patterns: Elements of
reusable Object Oriented Software,
Addisson-Wesley, Reading, MA.

Gamma, E., Eggenschwiler, T. (2000),
http://www.jhotdraw.org

Johnson, R. E., Foote, B. (1998), “Designing
reusable classes”, Journal of Object
Oriented Programming, vol. 1, n°2.

 Kim, H., Boldyreff C. (2002), “Developing
Software Metrics Applicable to UML
Models”, Workshop QAOOSE, Malaga-
Spain.

Koskimies, K., Mossenback, H. (1995),
“Designing a framework by stepwise
generalization”, 5th European software
Engineering Conference,. Lecture Notes
in Computer Science 989, Springer-
Verlag.

Lorenz, M., Kidd, J. (1994), Object-Oriented
Software Metrics: A Practical Approach,
Prentice Hall.

Meyer, B., (1988) Object Oriented software
construction, Edition Prentice-Hall
International.

OMG. Model-Driven Architecture Home Page,
http://www.omg.org/mda (2001).

Pree, W. (1994), “Meta-patterns: a means for
capturing the essentials of object-
oriented designs”, European Conference
on Object Oriented Programming,
Bologna, Italy.

Rational, www.rational.com, 2004.

 16

Riehle, D., Gross, T. (1988) “Role model
based framework design and
integration”, Proceedings of
OOPSLA’98, Vancouver.

Reenskaug, T., (1996), Working with objects,
Greenwich : Manning.

Roberts, D., Johnson, R. (1996), “Evolving
Frameworks : A pattern language for
Developing Object Oriented
Frameworks”, Proccedings of the third
conference on pattern languages and
programming, Montecilio, Illinois.

Rumbaugh, J., (1991), Object Oriented
Modelling and design, Prentice Hall.

Sanada, Y., Adams, R. (2002), “Representing
Design Patterns and Frameworks in
UML-Towards a Comprehensive
Approach”, Journal of Object
Technology, vol. 1, n°2, July-August.

Shepperd, M.J., Ince, D. (1993), Derivation
and Validation of software Metrics,
Clarendon Press, Oxford, UK.

JARP (2001), Petri Nets Analyzer: JARP,
SourceForge, http://www.jarp.org,.

JOONE (2001), Java Object Oriented Neural
Engine: Joone, SourceForge,
http://www.joone.org,.

Schmid, H. A. (1997), “Systematic framework
design by generalization”,
Communications of the ACM, Special
issue on Object Oriented Application
frameworks, Vol 40, N°10.

Smith, G. (2000), The object-Z specification
Language, Advances in Formal methods,
Kluwer Academic Publishers.

Szyperski, C., Pfister, C. (1996), Workshop on
Component Oriented Programming in
Mülhaüser M. (editions), Special issue
on Object Oriented Programming,
ECOOP (96), Vrelag, Heideberg.

Renew, (2001) Wienberg, F., Kummer, O.,
Duvigneau M., http://www.renew.org.

Xenos, M., Starvrinoudis, D., Zikouli, K.,
Christoudalis, D. (2000), “Object-
Oriented Metrics- A Survey”,
Proceedings of the Federation of
European Software Measurement
Associations, Madrid, Spain.

	3.2.2 - Unification of the class diagrams
	R

