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Résumé : Cet article présente des travaux pertinents à la réutilisation architecturale. D’une 
part, il présente la méthode de conception de frameworks FBDM (Framework Based Design 
Method). D’autre part, il évalue FBDM à travers une étude de cas dans le domaine des 
éditeurs graphiques. La méthode FBDM offre un langage de conception, un processus de 
conception et un outil CASE. Le langage de FBDM est un profile UML, qui étend  UML avec 
des annotations graphiques afin de distinguer entre le noyau du framework  et les points de 
variation. Le processus de conception de FBDM génère un framework d’une manière semi-
automatique en unifiant un ensemble d’applications dans le domaine du framework; le 
développeur du framework doit décider de la complétude de quelques relations faisant partie 
des points de variation. La méthode FBDM est évaluée à travers un framework d’éditeurs 
graphiques. Elle compare le framework généré par FBDM avec le framework populaire 
JHotDraw. De plus, l’évaluation utilise des métriques de conception pour examiner la qualité 
du framework généré et l’apport de la notation de FBDM. 
 
Summary : This paper presents work pertinent to architecture reuse.  On one hand, it presents 
the framework design method FBDM (Framework Based Design Method) which offers a 
design language, a design process and a CASE toolset.  On the other hand, it reports on an 
experimental evaluation of FBDM in the domain of graphical drawing editors.  The design 
language of FBDM is a UML profile that extends UML with graphical annotations to 
distinguish between a framework core and hot-spots.     The FBDM design process generates 
a framework semi-automatically by unifying a set of applications in the framework domain; 
the developer is probed to decide on the completeness of some relations. The second part of 
this paper uses a graphical drawing editor framework to evaluate FBDM. It compares the 
framework generated by FBDM to the popular JHotDraw framework.  In addition, it uses 
design metrics to examine the quality of the generated framework and the usefulness of the 
notation of FBDM.  
 
Mots clés : Réutilisation, conception de frameworks, métriques de conception, FBDM. 
 
Keywords : Reuse, framework design, design metrics, FBDM. 
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An Evaluation of the FBDM Framework Design Method 

 

 

1 – INTRODUCTION 

As computerized systems became larger and 
increasingly complex, the benefits of reuse became 
irrefutable.  In fact, the software engineering 
community has been applying several object-
oriented based reuse techniques ranging from class 
and component libraries (c.f., (Meyer, 1988) 
(Szyperski, 1996)) to, more recently, generic 
architectures (a.k.a. frameworks (Johnson, 1998)) 
and evolving models (c.f., MDA (OMG, 2001)).  
 
The work presented in this paper is an academic 
contribution to architectural reuse through 
frameworks.  An object-oriented framework offers 
the skeleton of applications in a given domain,  that 
can be customized by an application developer 
(Fayad, 1998). Hence, it allows the reuse of design 
models, code and valuable domain expertise 
(Johnson, 1998). Therefore, it ensures an increased 
productivity, a shorter development time and a 
higher quality of applications.  
 
Overall, a framework is composed of immutable 
parts, called frozen-spots or core, and adaptable 
parts, called hot-spots. A frozen-spot describes the 
typical software components and is, therefore, 
present in any application generated from the 
framework. On the other hand, a hot-spot allows the 
framework extension to a particular application, 
and helps in tracing the evolution of a given design. 
 
One of the problems impeding the widespread use 
of frameworks is the difficulty of their 
development, combined with the lack of a standard 
notation that helps to identify the hot-spots.  This 
problem motivated several design notations based 
on UML (c.f., (Pree, 1994) (Fontoura et al., 2000) ) 
and a few design processes (c.f., (Schmid, 1997)). 
However, none of the proposed notations 
distinguishes between the core of the framework 
and the hot-spots and none of them relies on a 
formal semantics. Moreover, none of the design 
processes proposed in the literature gives rules that 
guide the generation of the framework and that 
determine its different components.  
 
Clearly identifying (both finding and denoting) the 
core and the hot-spots of a framework is essential in 

understanding and reusing the framework.  This 
motivated our work in proposing a framework 
design method, called FBDM (Framework Based 
Design Method, that offers a design language, 
called F-UML with a precise semantics (Bouassida 
et al., 2003), a design process (Bouassida et al., 
2002) and a CASE tool, called F-UMLTool 
(Bouassida et al., 2004). The F-UML language is a 
UML profile that increases the expressiveness of 
UML with framework specific concepts and that 
guides a framework design reuse. It adds tags and 
graphical annotations to UML diagrams; the 
extensions help to distinguish visually between the 
core of a framework and its hot-spots and guide the 
user in deriving a specific application in the 
framework domain. On the other hand, the FBDM 
design process is a bottom-up process that 
generates a framework design by applying a set of 
unification rules to concrete application designs.   
In addition, it generates a framework with a 
minimum intervention from the developer; this 
latter is probed only to decide on the completeness 
of some structural relations (inheritance, 
composition,…), a decision often requiring domain-
specific knowledge.  
 
After an introduction to the FBDM method, this 
paper presents an experimental evaluation of 
FBDM in the domain of graphical drawing editors; 
the choice of the domain was motivated by the 
presence of a popular, mature and open source 
framework in this domain (JHotDraw (Gamma, 
2000)).  
 
The FBDM evaluation was conducted in two 
phases.  First, an intrinsic evaluation tested the 
completeness of the design unification rules and the 
quality of the generated framework.  Secondly, a 
comparative evaluation tested the correctness of the 
design process and evaluated the usefulness of the 
F-UML notation.  
 
The remainder of this paper is organized as follows.  
Section 2 reviews related work. Section 3 presents 
the framework design method FBDM. Section 4 
presents the three graphical drawing applications as 
well as the framework generated through FBDM.  
Section 5 presents the evaluation metrics used and 
reports on the results of our two-phase evaluation. 
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Section 6 concludes with a summary of the 
presented work and outlines future works. 
 
 
2. RELATED WORK 
Classical design languages (e.g., UML) and 
processes (e.g., OMT (Rumbaugh, 1991)) lack 
concepts to determine and express the variability in 
frameworks.  This motivated several researchers to 
propose design languages and processes 
specifically for frameworks.  We next review 
framework design languages and processes that are 
based on the de facto standard language UML. 

2.1 – UML-based Framework Design Languages 
Fontoura et al. (Fontoura et al., 2000) propose a 
UML profile for frameworks, called UML-F, where 
a design is expressed by a class diagram and a set 
of sequence diagrams.  This notation extends the 
two UML diagrams by presentation tags (e.g., 
complete, incomplete), basic modeling tags (e.g., 
fixed, application, framework) and essential pattern 
tags (e.g., FacM-Creator, FacM-ConcreteCreator). 
The added tags are used to mark, essentially, the 
complete/incomplete parts and the variable parts in 
the diagrams and the roles of diagram elements. In 
this notation, the extended class diagram represents 
the framework classes and relations. However, 
according to the tag definitions, this notation 
represents only the whitebox hot-spots; the second 
type of hot-spots, called blackbox (Schmid et al., 
1997), are therefore not expressible in this notation. 
In addition, several tags are complementary and 
thus are redundant (e.g., complete and incomplete, 
application and framework). Furthermore, the 
pattern tags combined with the presentation tags 
could overcharge the class diagram and impede the 
design understanding.  
 
Sanada et al. (Sanada et al., 2002) present an UML 
extension that “aims to be comprehensive and well 
defined”. Most of their proposed extensions have 
already been defined by Fontoura (Fontoura, 2000); 
the essential difference is the constraint covariant 
which shows that adding a subclass to a certain 
class might result in adding a subclass to another 
class in the class diagram.  
 
Riehle (Riehle, 1998) proposes a role modeling 
language that adapts the OORAM methodology 
(Reenskaug, 1996).  The proposed language 
represents a framework through a class model with 
an extension-point class set (places of extension), a 
built-on class set (the framework interface) and a 
free role type set (usages of the framework by other 
frameworks). This language focuses more on 
framework composition than framework adaptation.  
For instance, it does not visually distinguish 
between extension-point classes and frozen classes 

in the framework.  Therefore, one cannot easily 
recognize the whitebox and blackbox hot-spots. 
 
Overall, the proposed UML-based design languages 
for frameworks lack the visual distinction between 
the core and the two hot-spot types. This distinction 
is essential in understanding and reusing a 
framework. In addition, none of the proposed 
languages relies on a formal semantics. This latter 
is vital in analyzing  a framework and validating its 
reuses. 

2.2 – Framework Design Processes 
A design process for frameworks should 
systematically help to identify and derive a 
framework core, blackbox and whitebox hot-spots. 
It could follow either a top-down or bottom-up 
strategy. Bottom-up design works well where a 
framework domain is already well understood, for 
example, after some initial evolutionary cycles. In 
this case, the design process starts from a set of 
existing applications and generalizes them to derive 
a framework design (c.f., (Koskimies, 1995), 
(Fontoura, 2000)). On the other hand, top-down 
design is preferred when the domain has not yet 
been sufficiently explored. In this case, the design 
process starts from a domain analysis and then 
constructs the framework design (c.f., (Aksit, 
1999)). 
 
Koskimies and Mossenback (Koskimies et al., 
1995) propose a two-phase bottom-up framework 
design process. The first phase, called problem 
generalization, incrementally generalizes a 
representative application in the framework domain 
into “the most general” form. In the second phase, 
called framework design, the generalization levels 
of the previous phase are considered in a reverse 
order, leading to an implementation for each level. 
The last step in the second phase applies the 
resulting framework to the initial application. This 
design process does not provide for reuse 
guidelines; that is, it does not clearly identify nor 
does it guide the designer in finding the framework 
core and hot-spots. 
 
Schmid (Schmid et al., 1997) decomposes the 
framework design process into three steps: 1) 
design of a class model for an (arbitrary) 
application in the framework domain; 2) analysis 
and specification of the domain variability and 
flexibility, i.e., identification of the hot-spots; and 
3) generalization of the class model by applying a 
sequence of transformations that incorporate the 
domain variability.  This design process leaves the 
identification of hot-spots, during the second step, 
to the developer’s expertise. 
 
Fontoura et al. (Fontoura et al., 2000) propose a 
design process that considers a set of applications 
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as viewpoints (i.e., perspectives) of the domain.  
The process informally defines a set of unification 
rules that describe how the viewpoints can be 
combined to derive a framework.  This design 
process neither distinguishes between the two hot-
spot types, nor does it specify the object 
interactions. In addition, this process does not 
address semantic issues in the unified applications 
(e.g., synonyms, homonyms,…); it supposes that all 
the semantic inconsistencies between the 
viewpoints have been solved beforehand. 
 

3. THE FRAMEWORK DESIGN METHOD 
FBDM 

A framework design  consists in a framework 
design notation and a framework design process 
that guides the development of a framework. On 
one hand, the framework design notation must 
provide for a means to describe the framework 
static structure (the classes and their relations), the  
core, and the whitebox and blackbox hot-spots. In 
addition, it has to show explicitly the collaborations 
between objects instantiated from the framework 
classes, and to clarify  object responsibilities. On 
the other hand, the framework design process has to 
provide for design rules helping in the design of 
frameworks and to provide for a methodical, 
systematic way to design frameworks. In addition, 
it must guide the user in determining the core and 
hot-spots of the framework.  
 
These reasons motivated us to propose the FBDM 
design method with its design language F-UML and 
process. 
 

3.1 - The Framework Design Language F-UML 
 
A framework design expressed in the F-UML 
language is composed of four UML extended 
diagrams: 
 

•  A use case diagram that specifies the 
framework scope, objectives and domain 
limits. Table 1 summarizes and explains the 
F-UML extensions added to UML. 

•  A class diagram that describes the static 
architecture of a framework.  Table 2 
presents the F-UML notation for the class 
diagram. 

•  A pattern diagram that shows the design 
patterns (Gamma et al., 1995) and meta-
patterns (Pree, 1994) in order to delimit the 
roles of the framework classes.  

•  A set of sequence diagrams that describe 
object interactions. The extensions to the 

UML sequence diagram are described in 
Table 3. 

 
In F-UML, a blackbox hot-spot represents a 
component that can be selected (without 
modification) in an application derived from the 
framework.   On the other hand, a whitebox hot-
spot can be selected and modified to meet the 
special requirements of an application derived from 
the framework.  For example, a whitebox hot-spot 
class can be modified by specializing it (i.e., adding 
an inheriting class) adding/removing an 
attribute/operation, or redefining one of its 
operations.  Note that, since the use cases represent 
the design at a high level of abstraction, they can 
not include whitebox hot-spots.   
 
Being a UML profile, the F-UML language could 
be adopted easily by the UML community. In 
addition, having a precise, formal semantics 
(Bouassida et al., 2003) F-UML can be combined 
with a formal method that allows the verification 
and validation of framework designs. Currently, the 
F-UML semantics is expressed in Object-Z (Smith, 
2000) and verification is conducted with the Z/Eves 
theorem prover (Bouassida et al., 2005). 
 
 
 

Notation Explanation 

 

 

 
a framework core 

 

 

 
a framework blackbox hot-spot 

 

 

a framework  whitebox hot-spot 
 
 

 

Method  

 

 
a re-definable (virtual)  method 
in a whitebox hot-spot 

 

Method (undefined) 

 

 
a method with an undefined 
signature 

 
{extensible} 

 

 
an adaptable class interface 
(whitebox hot-spot) 

{incomplete} 

 

 

 

 
the framework may be adapted 
by  adding other related classes 
(inheritance, composition,…) 

Table 1. F-UML class diagram notation 
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Notation Explanation  

  
 
a framework core use case 
(actor) 
 

  
a framework hot-spot use case 
(actor) 
 
 

  
to show that  it is possible to 
add an inheriting actor (use 
case) in an application adapting 
the framework 
 

Table 2. F-UML use case diagram notation 

 
 
 

Notation Explanation  

Class : Object 

 

a framework core 
object 

Class : Object 

 

a framework 
whitebox hot-spot 

Class : Object 

 

a framework 
blackbox hot-spot. 

{optional} 

Class : Object Class : Object 

 

the message may  
not exist in an 
application reusing 
the framework 

Table 3. F-UML sequence diagram notation 
 

3.2 - The FBDM design process 
The FBDM design process is a bottom-up process 
that takes several applications in a given domain 
and applies a set of unification rules to derive a 
framework in the F-UML notation. (Roberts 
(Roberts 1996) states that three applications 
sufficiently represent their domain). In addition, the 
FBDM design process helps the framework 
designer to structure the framework by determining 
automatically its core and hot-spots.  
 
Overall, the design process is based on architectural 
and noun comparisons. Architectural comparisons 

examine the structure of the applications defined 
through the different relations (composition, 
aggregation …). Since a framework offers a basic 
architecture for the derived applications, 
architectural comparison of the unified applications 
is, therefore, a reasonable approach. 
 
The second type of comparisons used in the FBDM 
design process is noun comparisons.  These latter  
examine the nouns attributed to the different 
entities (actors, use cases, classes, attributes, 
methods …) and, thus, deal with the semantics 
included in the applications through naming.  These 
comparisons rely on the hypothesis that nouns are 
well chosen to reflect the roles of software entities. 
More specifically, they use semantic relationships 
(e.g., equivalence, generalization-specialization, 
composition) between nouns of classes, attributes 
and methods that appear in the applications to be 
unified. In addition, the unification rules compare 
the method signatures, which, combined with the 
noun comparison, give an insight on the dynamic 
behavior (or roles) of the classes. 
 
In the remainder of this section, we note a class C 
in an application Ai as CAi, a use case U in an 
application Ai as UAi, and an actor A in an 
application Ai as AAi. 

3.2.1 Unification of the use case diagrams 
To design the framework use case diagram, the 
unification process first extracts use cases (actors) 
common to all of the applications and puts them as 
the framework core. Secondly, it extracts the 
different use cases (actors) and puts them as 
blackbox hot-spots.   For this, it uses the following 
four semantic relations: 

•  N_equiv(AA1,...,AAn) means that the actor 
names are either identical or synonym. 

•  N_var(AA1,...,AAn)  means that the actor 
names are a variation of a concept, e.g., 
employee-contractual, employee-permanent, 
employee-vacationer. 

•  Gen_Spec(AA1;AA2,...,AAn) means that the 
name of the actor AA1 is a generalization of 
the names of AA2 ,…, AAn, e.g., PersonA1-
EmployeeA2. 

•  N_dist(AA1,...,AAn) means that the name of 
the actor AA1 has neither an equivalent nor a 
variation, nor a generalization in the other 
applications. 

 
The design of the framework use case diagram 
through unification is guided by the six 
rules depicted in Figure 1.  
 

{incomplete} 
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3.2.2 - Unification of the class diagrams   

To design the framework class diagram, the 
unification process determines the semantic 
correspondence between the classes, using the 
following criteria: 

•  class name comparison criteria to compare 
semantically the names; 

•  attribute comparison criteria to compare the 
names and types of the attributes; and 

•  operation comparison criteria to compare the 
names and signatures of the operations. 

 
Note that, when comparing the set of attributes and 
methods of two classes, the unification rules take 
into account the interpretation of the inheritance 
relation.  Thus, they consider the set of attributes 
(operations) of a class as those contained in the 
given class augmented with the set of attributes 
(operations) of the super classes from which it 
inherits.   
 
Class name comparison criteria: They express the 
linguistic relationship among class names that 
belong to different applications. We defined five 
types of relations between classes: 
 

•  N_equiv(CA1,...,CAn), N_var(CA1,...,CAn), 
Gen_Spec(CA1;CA2,...,CAn), and 
N_dist(CA1,..., CAn) are defined in a similar 
manner to their counter parts for the use case 
diagram; and 

•  N_comp(CA1;CA2,...,CAn) which means that 
the class name CA1 is linguistically a 
composite of the components CA2,…,CAn, 
e.g., HouseA1-RoomA2. 

 
Attribute comparison criteria: They express the 
relationship between the attribute names and the 
attribute types of application classes. They are 
grouped into four categories: 

•  Att_equiv(CA1,..., CAn) implies that the 
classes have identical or synonym attribute 
names with the same types. 

•  Att_int(CA1,..., CAn) implies that CA1,..., CAn 
have attributes in intersection. 

•  Att_dist(CA1,..., CAn) implies that no attribute 
of CA1,..., CAn is common with  the attributes 
of the others. 

•  Att_conf(CA1,..., CAn) implies that there 
exists at least one attribute of CA1 with a 
name equivalent to the attributes of CA2,..., 
CAn but their types are different. 

 

Operation comparison criteria:  Operation 
comparison consists in comparing the operation 
names and signatures (returned types and parameter 
types). The operation comparison criteria 
Op_equiv(CA1,...,CAn), Op_int(CA1,...,CAn), 
Op_dist(CA1,...,CAn), and Op_conf(CA1,...,CAn) are 
defined in a similar manner to the attribute 
comparison criteria. 
 
The class diagram unification process is depicted in 
Figure 2. (For a detailed description of the 
unification rules, the reader is referred to 
(Bouassida et al., 2002).  As illustrated in Figure 2, 
the unification rules determine automatically the 
framework core and hot-spots.  The designer is 
probed only to decide on the completeness of some 
relations (Rule 3.d and 7).  This information is, in 
fact, application dependant and requires domain 
knowledge.  
 
In addition, in Figure 2, Rule 5 deals with the 
generalization-specialization relation in a manner 
similar to N-Comp  relation of Rule 4. Furthermore, 
Rule 3.b may add new inheriting classes to the 
framework. The addition depends on the 
significance of the number of attributes and 
methods in an inheriting class C with respect to 
another class C’. This is defined using the ratio Rsig: 
 

f C methods o number of of Cattributesnumber of 
and C'long to C ds that be and methoattributesnumber of  (C, C') Rsig

+
=

  
Informally, a class C has a significant number of 
attributes and methods with respect to a class C’, if 
Rsig is greater than a fixed threshold (e.g., 50%) that 
can be fixed by the framework designer. This ratio 
fixes the level of details the framework designer 
would like to include in the framework. 
 
Further, Rule 6 adds or ignores hot-spot classes 
according to the domain coverage ratio Rdc :  
 

nsapplicationumber of 
,.., An Aalents) in its equiviations orits s of C(or occurrencenumber of 

 (C) Rdc
1var

=

 
Informally, this ratio is used to determine the reuse 
potential of a class. If a class is present in several 
applications, then it covers an important space of 
the framework domain; thus, it must be present in 
the framework hot-spot. On the other hand, if a 
class is present in few applications, it is too 
application specific; thus, if it is added to the 
framework, it may complicate unnecessarily the 
framework comprehension. 
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The generic actor and inheriting 
actors are added to the 

framework with generalization 
relation between them* 

Rule 1: 

Take an actor AA1 (use case U A1)  

Name 
comparison 

N-dist(AA1,…AAn) 

Repeat until all the actors 
(use cases) of A1 are taken 

N-equiv(AA1,…AAn) 

Add the actor (use case) to 
the framework  core 

The actors (use cases) are added to 
the framework as inheriting to a new 

generic core actor (use case)* 
 

N-Var(AA1,…AAn) Gen-Spec(AAi;…AAn) 

Rule 2: Rule 3: 

Rule 4: 

*if the designer decides that the inheriting actors (use 
cases) do not represent all the domain, then the 
inheritance relation is tagged with {incomplete} 
**if the designer decides that the extensions or 
inclusions of a use case do not represent all the domain, 
then the extends or includes relation is tagged with 
{incomplete} or if he decides that an actor can have 
other associations with use cases, then the association is 
tagged with {incomplete}

 

Yes 

No 

Transfer all the relations between actors (use 
cases) added through Rules 1-5. If the relation 
involves a core actor (use case), then *, ** 

Rule 5: 
All the actors (use cases) remaining in the 
applications A2,.., An are added to the framework 
as hot-spots if Rdc(AAi) 2̆/3; or AAi would be two 
levels away from a core actor(use case) 

Rule 6: 

Add the actor (use case) 
to the framework as a hot-
spot, if Rdc(AA1)̆ 2/3; or 
AA1 would be two levels 
away from a core actor 

More 
Actors(use cases)

Figure 1: Design of the use case diagram 
 

3.2.3 - Unification of the sequence diagrams 
The framework sequence diagrams are obtained by 
the unification of the sequence diagrams which 
represents semantically equivalent scenarios. 
Briefly, the unification process takes the “union” of 
all the sequence diagrams of the given applications 
and marks any message as {optional} if it does not 
appear in all the applications.  Any sequence 
diagram that does not have equivalent diagrams in 
the other applications being unified is transferred to 
the framework with all its messages marked 
{optional}.  
 
For more details on the six unification rules of the 
sequence diagrams, the reader is referred to 
(Bouassida et al., 2002). 
 
Finally, we note that the FBDM design process can 
be optimized in two ways.  First, the unification can 
start with the application having the minimum 

number of elements (i.e., use cases/actors, classes, 
and messages).  Secondly, in the unification rules of 
the class diagrams, the comparisons can be limited 
to “significant” attributes and operations, i.e., those 
that  are not omni present in the classes; for 
example, the creator and destructor operations in a 
class.  

4 - THE GRAPHICAL DRAWING EDITOR 
CASE STUDY 

Two motivations were behind our choice of the 
graphical drawing editor domain.  First, an open-
source and mature framework already exists 
(JhotDraw (Gamma et al., 2000)) and, secondly, 
several derived applications also exist.   The 
availability of the framework and its applications 
allowed us to conduct both an intrinsic and a 
comparative evaluation of FBDM. 
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1 The designer must decide on the completeness of the relation. If he decides that the component 
(inheriting) classes do not represent the entire domain, then the composition (inheritance) relation is 
tagged with {incomplete}. 
2 New classes inheriting from the added class could be added according to the following rule: for each 
application, if its class has a “significant” number of attributes and methods (with respect to the already 
added class), then an inheriting class is added to the framework with the additional attributes and 
methods.  
3 If  Op-Conf (CA1,…CAn) , thus the method in conflict has a corresponding method in the framework 
core class with the same name, and an undefined signature, it is a virtual method. If Att-Conf 
(CA1,…CAn) , thus the attribute in conflict has a corresponding attribute in the class of the framework 
core that has the same name and the more general attribute type. 
4 The domain coverage ratio Rdc(C)=number of occurences of C(or its variations or its equivalents) in 
A1,.., An / n  
 
 

Op-equiv 
 ⊕  Op-int  
 ⊕  Op-dist 

Take a class CA1  

N-dist(CA1,…CAn) 

N-equiv.(CA1,…CAn) 

Att-dist 

Att-equiv 

Op-equiv 

Att-int 

Op-int
⊕   Op-dist 

Op-equiv 
 ⊕  Op-int  
 ⊕  Op-dist 

N-Var(CA1,…CAn) 

N-Comp(CAi,…CAn) 

  Att-equiv 

Att-int 

Op-int  
⊕  Op-dist 

Operation 
comparison

Att-dist 

  Op-equiv 

  Att-equiv 

Att-dist 

Op-equiv 

Op-int ⊕  
 Op-dist] 

Name 
comparison

Attribute 
comparison 

Att-int 

Attribute 
comparison

Attribute 
comparison 

Operation 
compariso

Op-equiv 
 ⊕  Op-int  
 ⊕  Op-dist 

Operation 
comparison 

Operation
comparison 

Operation 
comparison 

Operation 
comparison 

Add CA1 to the 
framework as a hot-
spot with an 
undetermined type 
if Rdc(CA1)˘2/3; or 
CA1 would be two 
levels away from a 
core class4 

Add CA1 to 
the 
framework 
as a core 
class 

Add a core class containing the 
attributes and methods in 
intersection to the framework 
tagged {extensible}. The added 
class hierarchy is whitebox 
since the class interface may 
change 2 & 3  

The classes CA1,..CAn are added to 
the framework as inheriting 
classes to a new abstract core 
class containing the attributes and 
methods in intersection tagged 
{extensible}. The added class 
hierarchy is whitebox since the 
class interface may change 1 
 

The composite class and the 
component classes are added to 
the framework with  a 
composition relation. The 
attributes and methods in 
intersection are put in the 
composite class which is 
marked as core 1 

Rule2.a Rule2.b Rule 2.c Rule2.d Rule3.a Rule3.c Rule3.d Rule 4.a Rule4.d Rule 4.c Rule1 Rule3.b Rule 4.b 

 

Rule 6: Each class C remaining in A2,.., 
An is added to the framework as an 
undetermined hot-spot if the domain 
coverage ratio Rdc(C)˘2/3;  or C would be 
two levels away from a core class4 

Rule 7: Transfer all the relations between 
classes to the framework. If the relation 
involves a core class, then 1 

Gen-Spec(CAi,…CAn) 

Rule  5 

Rule 8: Visit all hot-spot classes C with an 
undetermined type. If C contains virtual or 
undefined methods or if one of its 
inheriting classes is whitebox, then mark 
C as a whitebox, otherwise mark C as a 
blackbox. If C has a relation with a core 
class, then 1 

Yes

No 

More 
classes 

 
Figure 2: Class diagram design 
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Recall that the FBDM design process starts from 
existing applications. For this, we have chosen the 
following three applications (due to the availability 
of their source code):  JARP, a graphical composer 
for petri nets (JARP, 2001); JOONE, a Java 
framework to create, train and run neural networks 
(JOONE, 2001); and RENEW, an editor for 
drawing reference nets (RENEW, 2001).   

Before starting our evaluation, we have re-
engineered the Java source code of the three 
graphical drawing editor applications with a help 
from the Rational Rose tool (Rational, 2004). In 
addition, we manually specified their use case 
diagrams and sequence diagrams by examining 
their documentation. Due to space limitations, we 
next give a quantitative description of the three 
applications and focus on describing the framework 
generated through FBDM. 

4.1 – The Unified Applications 

JOONE has a  use case diagram composed of one 
actor and 14 use cases related by 2 “extends” 
relations, 5 “includes” relations and 6 associations. 
Its class diagram is composed of 242 classes 
interrelated by 132 inheritance relation, 35 
associations and 48 aggregation.  It has 15 sequence 
diagrams.  
 
On the other hand, the JARP application has a use 
case diagram composed of one actor and 13 use 
cases related by 5 “extends” relations, 3 “includes” 
relations and 5 associations. Its class diagram is 
composed of 175 classes related by 123 inheritance 
relations, 33 associations and 24 aggregations. It 
has 12 sequence diagrams.   
 
As for the application RENEW, it has a use case 
diagram composed of one actor and 21 use cases 
related by 3 “extends” relations, 11 “includes” 
relations and 5 associations. Its class diagram is 
composed of 328 classes related by 243 inheritance 
relations, 191 associations and 17 aggregations.   

4.2 – The Generated Framework 

Figure 3 shows the use case diagram of the 
framework generated by unifying the three 
applications in F-UMLTool. Similar to the unified 
applications, it has one core actor.  In addition, it 
has 27 use cases marked as blackbox hot-spots 

(e.g., “create a neural network Figure”   and “create 
a petri Net Figure”); these use cases were not 
present in all of the unified applications and, thus, 
represent particular application-specific 
functionalities. Their presence in the use case 
diagram gives the designer an idea on possible 
adaptations of the framework and guides him/her in 
the reuse. Furthermore, the generated use case 
diagram contains seven use cases marked as core 
(e.g., “create figure”); these latter represent the 
basic functionalities of any graphical drawing editor 
application, which also the case of the three unified 
applications. 
Figure 4 partially shows the generated class 
diagram of the framework.  The complete class 
diagram contains 220 classes, among which 38 are 
core, 4 are both core and whitebox, 76 are blackbox 
and 102 are whitebox classes.   
 
Examining closely the generated class diagram, we 
found that among the classes present in the three 
applications, we have the classes Figure,  
AbstractFigure, AttributeFigure and 
CompositeFigure; thus, these classes are part of the 
framework core. In addition, among these classes, 
the classes AbstractFigure, AttributeFigure and 
CompositeFigure contain virtual methods; that is, 
they could be refined either via inheritance or by 
overriding some of their methods.  For this, they are 
marked as both whitebox and core classes.  

 
During the generation of the framework class 
diagram, F-UML Tool decided automatically on the 
type of the hot-spot classes (e.g., AttributeFigure, 
PolylineFigure are whitebox, PetriPlace and 
PetriTransition are blackbox). It prompted us to 
decide on the completeness of 16 inheritance and 
composition relations. Among these relations, we 
cite the inheritance relation between 
AttributeFigure and RectangleFigure, 
EllipseFigure, TextFigure; since the inheriting 
classes do not represent the entire domain, we have 
decided to tag this relation {incomplete}. 
 
Figure 5 presents an example of the generated 
sequence diagrams, for the “Create a figure” use 
case. Some objects (e.g., PetriPlaceImpl and 
LayerFigure) are blackbox in conformance with the 
class diagram. The message LayerFigure is tagged 
optional since it appears only in one application 
among the three unified ones.   
 
 



 

 

import export type 

Create a place 

Analyze transition invariants 

Create a connection    

extend 
extend 

include 

user 

Create a transition 

Simulate 

include 

include 

Jpeg format 

include 

Snet format 

include 

Change the weight 
of an arc 

Add nodes in an 
arc 

extend 

extend 

Create a figure     

XML format

include 

As shadow nets 

include 

XML format 

include 

As shadow nets 

include 

Create a virtual 
place 

include 

Create a neural 
network Figure

Create a Layer 

Create a synapse 

include 

include 

Test an arc 

extend 

clear arc 

extend 

Test the correctness of a Neural Network

Create a connection   
between  synapses

Train the  Neural Network 

Create an arc     

Create a petri net 
Figure

Edit Figure 

Modify Figure 

Editing the petri net

Modify the neural net 

Modify the petri  net 

Editing the neural net 

 
Figure 3: Use case diagram of the generated graphical drawing editor framework 

 
 

 
 

 
Figure 4: Class Diagram of the generated Graphical Drawing Editor Framework (partial view) 
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: CompositeFigure : AbstractFigure : Figure : AttributeFigure : TextFigure

Draw() 

Add() 
DrawFrame() 

DrawBackground) 

SetText() 

: PetriPlaceImpl

Draw() 

: LayerFigure 

LayerFigure() 

{optional}  
Figure 5: Generated Sequence diagram for “Create Figure” 

 

5 - EVALUATION OF THE FBDM METHOD 

The evaluation of FBDM is divided into two 
phases. In the first phase, the quality of the 
generated framework is examined with respect to 
the quality of the original applications; the quality 
is evaluated using several object-oriented design 
metrics. In the second phase, the generated 
framework is compared with the existing 
framework (JHotDraw) to examine its 
completeness, consistency and non-redundancy.  
This comparative evaluation allows us, in addition, 
to evaluate the usefulness of the F-UML notation. 

5.1 - Evaluation Metrics 
Many researchers have been interested in software 
metrics (c.f., (Kim,2002), (Shepperd, 1993)) and 
particularly in object-oriented specific metrics (c.f., 
(Chidamber, 1994), (Lorenz, 1994), (Xenos, 
2000)). Xenos (2000) presents a state of the art of 
object-oriented metrics and classifies them 
essentially into three categories: class, method and 
inheritance metrics.  
 
Kim (2002) adapted these object-oriented metrics 
for UML diagrams. In our evaluation, we have 
selected a set of most pertinent metrics for 
frameworks from the works of Xenos (2000) and 
Kim (2002). To these metrics, we added a set of 
framework specific metrics. 
 
As illustrated in Table 4, the selected metrics for 
each diagram can be divided into two categories, 
depending on their usage.  The first category of 
metrics can be used to measure the quality of a 
diagram in terms of its structure.  The second 
category of metrics (marked with R) helps to 
identify the reuse degree of a diagram, e.g., the 
number of classes in the core, the number of 
methods that must be redefined when reusing a 
whitebox class, etc.  We note that the metrics listed 
in Table 4 can be used to calculate other metrics, 
e.g., the number of hot-spot use cases (NHU) and 
the number of hot-spot actors (NHA) can be can be 
derived by subtracting NCU from NUM and NCA 
from NAM, respectively. 

5.2 – An Intrinsic Evaluation 
In this intrinsic evaluation of the generated 
framework, we aimed at testing the efficiency of 
the FBDM process. More precisely, we wanted to 
answer the following question:  staring from 
“good” quality applications, does the FBDM 
process generate an “as good” quality framework? 
For this, we used the set of quality metrics to 
examine the generated framework.   
 
Table 5 summarizes the values of the metrics used 
to answer this question. Overall, as for the class 
diagrams of the applications, similar results were 
confirmed for the quality of the generated 
framework class diagram since it is the largest, we 
next examine it more closely.  
 
Number of classes  
The generated class diagram has a fewer classes 
than the largest application (RENEW). The 
excluded classes are due to Rule 6, which uses the 
heuristic Rdc to decide whether a class covers the 
domain enough to be added to the generated 
framework. Recall that Rdc determines the 
importance of a class in the domain as a function of 
the number of appearances of the class in the 
unified applications. In other words, this heuristic 
lets us eliminate the classes that are too application 
specific. For instance, the class PetriEditor which 
belongs to the JARP application was omitted in the 
generated framework, since both Rdc(PetriEditor) < 
2/3 and this class  is  far from a core class by more 
than  two inheritance levels. 
 
Number of relations 
In addition, the number of relations (association, 
aggregation and inheritance) slightly increased in 
the generated class diagram due to Rule 7 which 
automatically transfers all relations between classes 
added to the framework class diagram. For 
instance, according to the FBDM process, the DIT 
of the generated framework will be at most one plus 
the maximum of the DITs of the original 
applications.  The additional depth level results 
from Rule 3.d and justifies the value of NIM for 
the generated framework.  For example, consider 
the DIT of the class AbstractFigure: in the JOONE 



 12

application, it is equal to 4, in the JARP and 
RENEW applications it is equal to 3, while it is 
equal to 4 in the generated framework.  

Similar results were confirmed for the quality of the 
generated use case diagram and sequence diagrams. 

 
 

 
 

Metric                        Definition 
NCM Number of classes in a model (Kim, 2002) 
NCC Number of core classesR 

NBBC Number of blackbox hot-spot classesR 
NWBC Number of whitebox hot-spot classesR 
NWBCC Number of whitebox core classesR 
NAsM Number of associations in a model (Kim, 2002) 
NAgM Number of aggregations in a model (Kim, 2002) 
NIM Number of inheritance relations in a model (Kim, 2002) 

Class metrics 
NAtC Number of attributes in a class (Kim, 2002) 
NOpC Number of operations in a class (Kim, 2002) 
NROC Number of re-definable operations in a classR  

Inheritance metrics 
DIT Number of ancestors of a class (Chidamber,1994) 

C
la

ss
 d

ia
gr

am
 

NOC Number of children of a class (Chidamber,1994) 
NAM Number of actors in a Model (Kim, 2002)  
NCA Number of core actorsR 
NUM Number of use cases in a Model 

U
se

 c
as

e 
di

ag
ra

m
 

m
et

ri
cs

 

NCU Number of core use casesR  

NOM Number of objects in a Model (Kim, 2002) 
NMM Number of messages in a Model 

Se
qu

en
ce

 
di

ag
ra

m
  

NOpM Number of optional messages in a ModelR 

Table 4. Evaluation metrics used (R: reuse metric) 
 
 

Metric Generated 
Framework 

JOONE JARP RENEW    

NCM 220 242 175 328    
NAsM 93 35 33 191    
NAgM 8 48 24 17    
NIM 231 132 123 243  Metric Result
NAtC 0… 10 0…43 0 … 16 0 … 10  NCC 38 
NOpC 1 … 58 1 … 80 1 … 31 1 … 103  NBBC 76 
DIT 0 … 17 0 … 8 0 … 15  0 … 17  NWBC 102 
NOC 0 … 3 0 … 5 0 … 3 0 … 3  NWBCC 4 
NAM 1 1 1 1  NROC 0…7 
NUM 34 14 13 21  NCA     1 
NOM 

(“CreateFigure”) 
7 7 4 6  NCU 7 

NMM 
(“CreateFigure”) 

8 6 4 5  NOpM(“CreateFigure”) 2 

             Table 5. Values of quality metrics Table 6. Values of reuse metrics 
 
 
Overall, as for the class quality, the case study 
illustrates that the generated classes maintain the 
quality metric values below the largest values of the 
unified classes.  

While there are no fixed thresholds for the above 
metrics, it is clear that their values reflect the ease 
of understanding a design and the benefits of 
reusing it.  For example, classes with a large 
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number of attributes (NAtC) and methods (NOpC) 
would be of a higher complexity (Chidamber,1994). 
Another example is the DIT of a class, which 
measures the number of ancestor classes. The 
deeper a class is within the hierarchy, the greater 
the number of methods it inherits and, thus, the 
more complex the class is. However, while deeper 
trees yield a greater design complexity, they offer 
better reuse levels through the multiple inherited 
methods. 
 
A third example is the metric NOC, which both 
measures the number of a class children of and 
indicates its possible reuses: A large number of 
children implies a greater reuse potential. However, 
this measure alone may not convey a precise reuse 
measure.  For instance, consider the NOC of the 
class AbstractFigure; it is equal to 3 both in 
JHotDraw and the generated framework, which 
indicates that AbstractFigure offers a medium 
potential of reuse. However, in the generated 
framework, AbstractFigure is the root of an 
incomplete hierarchy (see Figure 4), which 
indicates that the generated framework can be 
adapted to a particular application by adding other 
inheriting classes.  Thus, with the F-UML notation, 
the number of incomplete relations stemming from 
a class can be combined with NOC for a better 
indication of the reuse measure. 

5.3 – A Comparative Evaluation 
In this evaluation, we aimed at testing the 
completeness and correctness of the generated 
framework, and the usefulness of the F-UML 
notation. 
 
Consistency and completeness of the use case 
diagram 
Comparing the use case diagram of the generated 
framework (Figure 3) with the manually designed 
use case diagram of JHotDraw, we noted that:  

•  The same main actor (user) is present in 
both frameworks.  

•  The 27 use cases representing application-
specific functions (e.g., create a neural net 
figure, create an arc) are generated as hot-
spots that illustrate possible adaptations of 
the framework. 

•  The set of use cases in the generated 
framework contains most of those of 
JHotDraw. More specifically, NUM is 9 in 
JHotDraw and it is 34 in the generated 
framework from which 27 are hot-spot use 
cases (i.e., shown only to give an idea on 
possible reuses) and 7 are core use cases 
(see Table 6). Thus, comparing JHotDraw 
with the generated framework, only two use 
cases ("create animation" and "use 

construction tools for figure") were not 
detected by the design process. Since they 
were not used by any of the three 
applications, these use cases do not 
represent essential functions of JHotDraw.  
In addition, relying on the F-UML notation, 
the missing use cases can be easily added as 
hot-spots.  

 
Overall, this case study confirmed the 
completeness and correctness of the unification 
rules for the use case diagrams, since the 
JHotDraw use case diagram is contained in the 
generated use case diagram, modulo the hot-
spots. 
 
Consistency and completeness of the class 
diagram 

Comparing the class diagram of the generated 
framework  (Figure 4) with the class diagram of 
JHotDraw, we noted that:  

•  All of the abstract classes which define the 
generic structure and behavior of  any 
application in the framework domain (e.g., 
Figure, AbstractFigure, CompositeFigure, 
FigureChangeListener, Drawing) are 
completely and correctly derived by the 
FBDM design process.  

•  The concrete classes that could be reused in 
specific applications (e.g., EllipseFigure, 
RectangleFigure) are generated as hot-spot 
classes. 

•  The NCM of JHotdraw is 216 while it is 220 
in the generated class diagram. Looking 
closely at both diagrams, we found out that:  

− The additional classes are marked as hot-
spots in the generated framework. This 
may lead us to conclude that the design 
process produces a framework with 
(possibly too many) application specific 
increments, e.g., PetriArc, PetriPlace, etc.  
These latter could be considered as details 
that may complicate the comprehension 
of a framework and hence impede its 
reuse.  However, the F-UML notation 
helps by visually distinguishing these 
details from the core. Thus, when reusing 
a framework, the designer can first focus 
on the core, and later he/she can choose 
to understand or ignore the hot-spots.   

− Some classes in JHotDraw were not 
derived in the generated framework 
because they were absent in the original 
applications (e.g., ImageFigure in 
JHotDraw). However, the FBDM design 
process puts the tag {incomplete} 
wherever the designer can add the 
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missing classes.  For instance, 
RoundRectangleFigure can be added as 
an inheriting class of AttributeFigure in 
the generated framework; this possibility 
is marked by the tag {incomplete} on the 
generalization out of AttributeFigure (see 
Figure 4).  These missing classes may 
reduce the number of reused classes (as a 
reuse metric); however, thanks to the F-
UML notation, the designer is advised of 
the places he is expected to focus his 
design effort. 

− The large number of classes in the derived 
framework is justifiable since the original 
applications have an average NCM of 248 
classes. In addition, a large number of the 
framework classes is a blackbox hot-spot 
(NBBC=76); that is, they give an idea 
about possible framework adaptations 
thus, one would only select some of these 
classes without having to modify them.   

− The relations (generalization, association 
and aggregation) derived in the 
framework are consistent with their 
counter parts in JHotDraw.  The 
generated framework contains additional 
relations taken with the application-
specific classes. 

 
Similar results were noted when comparing the 
sequence diagrams of the generated framework 
with the sequence diagrams of JHotDraw.   The 
generated sequence diagram includes the 
corresponding sequence diagram in JHotDraw. In 
addition, it complements it with an optional 
message (LayerFigure()) relating the core object 
Figure and the hot-spot object LayerFigure. 
 
Overall, the generated framework is consistent with 
and contains more details than JHotDraw; In 
addition, the degree of details produced in the 
generated framework depends on the level of 
domain coverage of the unified applications. F-
UML helps identifying the details, which is 
essential both to measure the degree of reuse and to 
guide a reuse.   However, it lacks concepts to 
express a conditional instantiation of two 
alternative hot-spots. For example, there is no 
indication in the class diagram of the framework of 
Figure 4 that the class NeuralNetDrawing cannot be 
taken with PetriNetImpl.  This leads us to consider 
the use of OCL to express such constraints in future 
work. Finally, the F-UMLTool was vital in the 
design process, especially in managing the 
complexity of applying the rules on the large class 
diagrams. 
 
Finally, we note that in addition to the JHotDraw 
experiment reported in this paper, we have 

evaluated the FBDM method in the case of a 
framework for e-commerce brokers (Bouassida et 
al., 2002). This latter case study contains all three 
diagrams. The framework was generated from three 
independent e-broker applications. Overall, the e-
commerce broker experiment confirms the above 
reported results for the graphical editor domain. 
Unlike the JHotDraw case study, we do not have 
access to an e-broker framework to compare the 
generality and degree of reuse of the derived 
framework. 

6 - CONCLUSION 

This paper first presented the FBDM design method 
for frameworks.  It then presented an experimental 
(intrinsic and comparative) evaluation of FBDM in 
the domain of graphical drawing editors.   
 
On one hand, the case study showed that the F-
UML notation facilitates the distinction between the 
core of the framework, which must be present in 
any application derived from it, and its variable 
parts.  This, in turn, can guide the designer in 
estimating the degree of reuse the framework can 
offer.  In addition, the case study highlighted the 
fact that the F-UML notation might need to be 
augmented with the Object Constraint Language 
(OCL) to express certain reuse constraints on the 
hot-spots.  
 
On the other hand, the case study showed that the 
design process generates a framework that contains 
the whole framework core, certain hot-spots present 
in JHotDraw, and other application-specific hot-
spots.   
 
We are currently working on three research axes.  
The first examines how to add the generation of the 
pattern diagram to the F-UMLTool.  The second 
consists of automating the collection of the 
semantic comparison criteria in the dictionary used 
by the F-UMLTool during the design process.  
Finally, our third research axis examines how F-
UML can be integrated in the OMG Model Driven 
Architecture (OMG, 2001); in particular, we are 
examining how to define the PIM-PIM and the 
PIM-PDM transformations in terms of hot-spots.  
The integration of F-UML in MDA provides MDA 
with a reuse validation capability through the 
formal semantics of F-UML (Bouassida et al., 
2003) (Bouassida et al., 2005). 
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